Università di Genova Facoltà di Ingegneria

Architetture e Prot. Wireless

Gestione della mobilità nelle reti IP

Prof. Raffaele Bolla

R. Bolla Arch. e Prot, Wireless n. o.

L'esigenza di mobilità nelle reti di tlc

- Le reti di tlc non prevedevano originariamente il concetto di mobilità
 - terminali ingombranti, necessità del collegamento cablato.
- L'evoluzione tecnologica ha reso sempre più interessante il concetto di mobilità:
 - la riduzione delle dimensioni dei terminali,
 - la crescente estensione delle rete di tlc,
 - l'avvento delle tecnologie di accesso senza fili,
 - la massiccia diffusione di dispositivi elettronici.

Lezione 4., v. 1.0

Diverse tecnologie, diverse soluzioni

- Le prime soluzioni per la mobilità sono state adottate nelle rete per la telefonia radiomobile
 - dispositivi portatili, accesso radio, necessità di copertura cellulare del territorio, grandi reti amministrate da pochi provider.
- Nelle reti dati non c'è stato uno sviluppo analogo
 - diverse soluzioni a livello di linea (Ethernet, Token Ring, WiFi, ...), difficoltà nella standardizzazione di meccanismi tra diversi domini amministrativi, dispositivi storicamente non utilizzabili in movimento.

Lezione 4., v. 1.0

R. Bolla Arch. e Prot, Wireless n. o.

Concetti di mobilità

- La mobilità nelle reti di TLC è un concetto abbastanza ampio:
 - mobilità del terminale
 - » possibilità di cambiare il punto di accesso alla rete senza interrompere i flussi dati attivi;
 - » es.: reti cellulari;
 - mobilità del servizio
 - » possibilità di accedere allo stesso servizio attraverso diversi terminali/interfacce/provider;
 - » es.: posta elettronica, agende elettroniche e preferenze;
 - mobilità della sessione
 - » possibilità di trasferire un flusso dati da un terminale ad un altro senza interruzione del servizio;
 - » es.: SIP;
 - mobilità dell'utente
 - » possibilità di localizzare l'utente su diversi terminali tramite un unico identificativo logico;
 - » es.: URL e proxy forking SIP.

Lezione 4., v. 1.0

Le soluzioni al problema

- Mobilità del terminale
 - handover (verticale, orizzontale)» GSM, 802.21
- Mobilità del servizio
 - accesso centralizzato alle informazioni personali
 - » mantenimento delle informazioni su server: messaggi di posta elettronica (POP3/IMAP), preferenze e impostazioni (SIP);
- Mobilità della sessione
 - trasferimento delle informazioni di contesto
 » SIP re-INVITE/REFER;
- Mobilità dell'utente
 - identificazione dell'utente invece del terminale
 » SIM, USIM, URL SIP.

Lezione 4., v. 1.0

5

R. Bolla Arch. e Prot, Wireless n. o.

Mobilità del terminale

- Rappresenta un problema classico nelle reti cellulari.
- Nelle reti dati il problema originario si limitava al roaming
 - movimento in assenza di comunicazione.
- L'interesse verso un vero e proprio handover si è avuto come conseguenza:
 - dell'avvento delle tecnologie radio anche nelle reti dati (per es. WiFi e WiMax),
 - del crescente interesse verso l'utilizzo di trasmissioni multimediali in tempo reale (VoIP).

Lezione 4., v. 1.0

Mobilità del terminale

- Micromobilità
 - cambiamento del punto di accesso alla rete, nella stessa rete logica
 - tipicamente interessa solo il livello di linea
- Macromobilità
 - cambiamento del punto di accesso alla rete e della rete logica
 - coinvolge sia il livello di linea che il livello di rete.

Lezione 4., v. 1.0

Mobilità del terminale

R. Bolla Arch. e Prot, Wireless n. o.

- Il problema della mobilità del terminale nelle reti dati può essere gestito:
 - a livello di linea:
 - » 802.21, UMA;
 - a livello di rete:
 - » Mobile IP, Cellular-IP, HAWAII;
 - a livello di trasporto:
 - » TCP-Migrate, MSOCKS (TCP Splice), SCTP;
 - a livello di applicazione:
 - » SIP, WiOptiMo.

Lezione 4., v. 1.0

Mobilità a livello di linea

- Poche tecnologie prevedono la possibilità di cambiare il punto di accesso
 - 802.11
 - » prevede servizi (Reassociation) per gestire il roaming all'interno di un BSS;
 - » non prevede meccanismi/soluzioni specifiche;
 - 802.16e
 - » Mobile 802.16 (riassociazione ad una diversa BS).

Lezione 4., v. 1.0

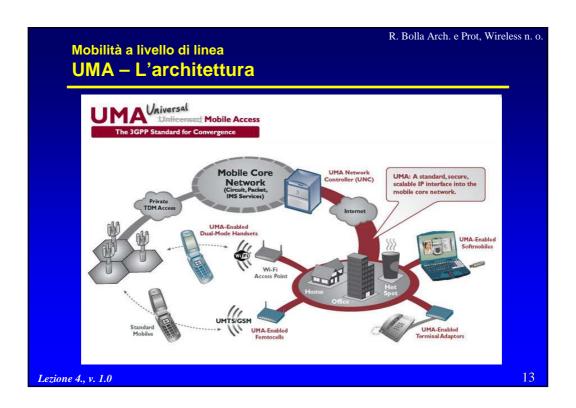
9

Mobilità a livello di linea

R. Bolla Arch. e Prot, Wireless n. o.

- Il problema più sentito riguarda la possibilità di gestire l'handover verticale:
 - IEEE 802.21: Media Independent Handover;
 - UMA: Unlicensed Mobile Access;
 - WiOptiMo: Wireless Optimizer of Mobility.
- Tutti questi sistemi sono orientati alla convergenza del processo di handover tra
 - reti radiomobili cellulari;
 - reti dati senza fili.

Lezione 4., v. 1.0


Mobilità a livello di linea

UMA - Unlicensed Mobile Access

- UMA è la nomenclatura commerciale dello standard GAN di 3GPP.
- Generic Access Network
 - estende i servizi mobili fonici e le applicazioni dati e IMS su reti di accesso IP;
 - l'applicazione più tipica è rappresentata dai terminali bimodali in grado di commutare in modo continuo tra reti GSM/WiFi;
 - permette la convergenza della telefonia fissa, mobile e Internet (Fixed Mobile Convergence).
- Lo sviluppo di GAN è stato estremamente veloce:
 - nel 2004 sono state pubblicate le specifiche iniziali;
 - nel 2005 è stato inglobato nella Release 6 di 3GPP;
 - nel 2006 sono stati presentati i primi terminali bimodali;
 - nel 2007 gli operatori radiomobili hanno cominciato ad offrire il servizio
 - » Orange, T-Mobile, Telecom Italia, Telia Sonera, Cincinnati Bell;
 - per il 2008 sono previsti i primi esperimenti di femtocelle.

Lezione 4., v. 1.0

R. Bolla Arch. e Prot, Wireless n. o. Mobilità a livello di linea **UMA – UMA Network Controller** • UMA definisce un nuovo elemento architetturale: l'UMA **Network Controller** (UNC). L'UNC interfaccia la rete 3GPP alla rete IP pubblica; - estende i servizi mobili a commutazioni di circuito, pacchetto e IMS a reti a larga banda; offre l'accesso ai terminali UMA attraverso la rete dati pubblica. 12 Lezione 4., v. 1.0

Mobilità a livello di linea **UMA – I terminali**

R. Bolla Arch. e Prot, Wireless n. o.

14

Dispositivi portatili bimodali (GSM/WiFi)

- alte prestazioin e bassi costi in presenza di reti WiFi (abitazioni, uffici, accessi pubblici);
- roaming e handoff.

• Femtocelle UMA

- Access Point con funzioni di BS per celle di dimensione estremamente ridotta (comparabile con celle WiFi);
- installazioni private;
- tramite UMA connettono BS private al resto della rete radiomobile tramite reti a larga banda.

Adattatori UMA

- estendono i servizi degli operatori mobili alla telefonia fissa;
- operano come sistemi VoIP, ma connettono l'utente direttamente alla rete dell'operatore mobile.

Applicazioni UMA

- estendono la connettività dell'operatore mobile con applicazioni software;
- funzionano in modo simile agli adattatori, ma sono realizzati come applicativi per calcolatori
 » richiedono comunque l'utilizzo di una SIM, tramite appositi adattatori USB;
- sfruttano reti dati a larga banda (mobili o fisse).

Lezione 4., v. 1.0

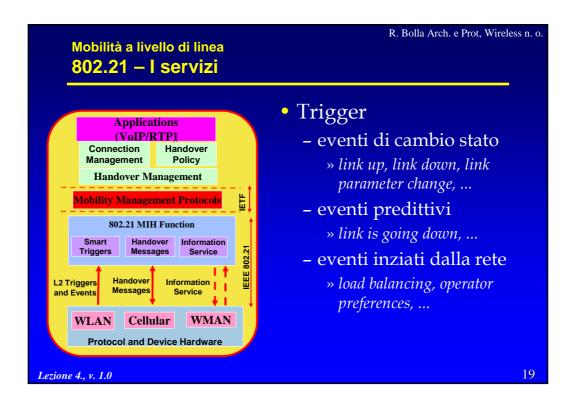
Mobilità a livello di linea UMA – L'offerta italiana

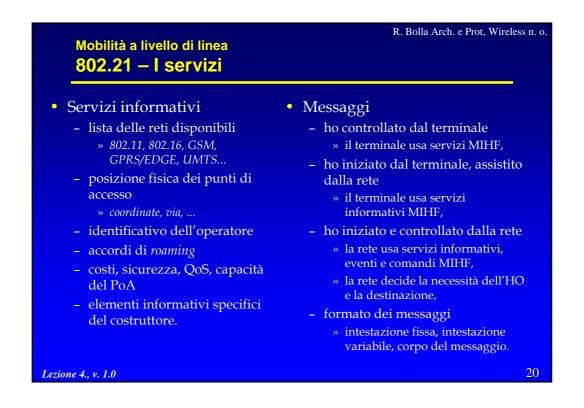
- Telecom Italia annunciò la propria offerta UMA (UNICO) all'inizio del 2007
 - Wind non replicò con proprie offerte.
- L'Agcom impose a TI di offrire il servizio all'ingrosso agli altri operatori
 - in risposta TI abbandonò la propria offerta.
- TI annunciò in seguito la volontà di offrire un servizio analogo prodotto "in casa"
 - basato sulla propria infrastruttura IMS/SIP;
 - disponibile come applicazione per Symbian;
 - al momento non ci sono ulteriori notizie...

Lezione 4., v. 1.0

R. Bolla Arch. e Prot, Wireless n. o.

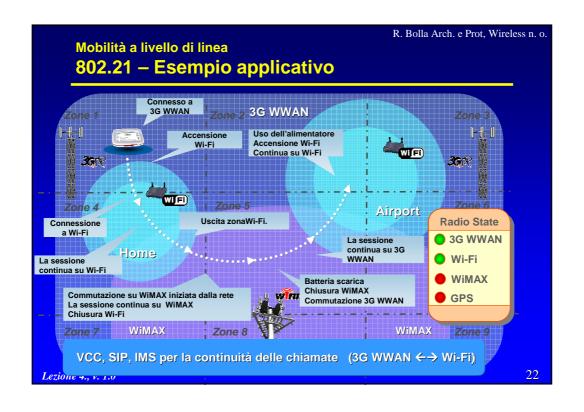
Mobilità a livello di linea


802.21 - Media Independent Handover Services

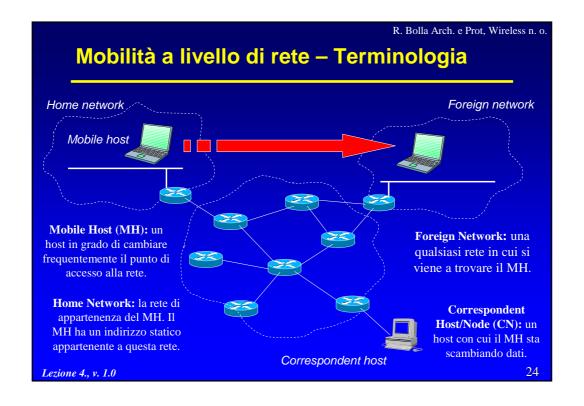

- Il numero di interfacce di rete offerto sui dispositivi è in continuo aumento.
- Esistono diversi meccanismi per cambiare il punto di accesso (PoA, *Point-of-Attachment*)
 - a livello di linea,
 - a livello di rete,
 - al momento non c'è convergenza tra i meccanismi sviluppati nell'ambito di diverse tecnologie e/o livelli protocollari.
- Nelle reti dati l'handover coinvolge almeno i livelli 2-3 della pila ISO-OSI.

Lezione 4., v. 1.0

Mobilità a livello di linea 802.21 – Gli obiettivi • Un unico standard per tutta la famiglia 802. • Definire un insieme omogeneo e comune per selezionare la rete in maniera efficace. • Interoperabilità con altre tecnologie e con i protocolli di rete.



Mobilità a livello di linea 802.21 – Estensioni


R. Bolla Arch. e Prot, Wireless n. o.

- Sono previste estensioni a livello di linea per trasportare la segnalazione MIP e supportarla al meglio
 - 802.11u: annuncio MIH nelle beacon, trasporto trasparente o tramite livelli di gestione;
 - 802.16g: annuncio MIH nei pacchetti DCD, trasporto trasparente o tramite piano di controllo;
 - 3GPP: accesso agli elementi informativi, preferenze del gestore sulle reti presenti;
 - IETF (MIPSHOP): integrazione con meccanismi L3, trasporto su IP dei messaggi MIH, esplorazione a livello IP, sicurezza.

Lezione 4., v. 1.0

Mobilità del terminale • Il problema della mobilità del terminale nelle reti dati può essere gestito: - a livello di linea: » 802.21, UMA; - a livello di rete: » Mobile IP, Cellular-IP, HAWAII; - a livello di trasporto: » TCP-Migrate, MSOCKS (TCP Splice), SCTP; - a livello di applicazione: » SIP, WiOptiMo.

Mobilità a livello di rete

- Il problema consiste
 - nell'identificare un host in modo indipentente dalla sua posizione all'interno della rete;
 - relegare alla rete stessa il compito di localizzare la posizione attuale dell'host.
- Soluzioni:
 - affidarsi ai protocolli di routing esistenti;
 - utilizzo dell'infrastruttura DNS;
 - multicast;
 - indirizzamento a due livelli.

Lezione 4., v. 1.0

R. Bolla Arch. e Prot, Wireless n. o. Utilizzo dei protocolli di routing Foreign Network 79.129.13/24 Il router della rete visitata annuncia un percorso verso l'ospite, come per una qualsiasi altra sottorete. 128.119.40.186 Tutti i router aggiornano la propria tabella IP aggiungendo, laddove necessario, una entry per l'host 128.119.40.186 Correspondent Nod 26 Lezione 4., v. 1.0

Utilizzo dei protocolli di routing

- Ci sono diverse controindicazione per questa soluzione:
 - il router sulla rete visitata dovrebbe essere in grado di riconoscere la presenza di un ospite;
 - il router sulla rete visitata dovrebbe possedere un indirizzo noto all'ospite e appartenente alla sua stessa sottorete;
 - l'utilizzo delle tabelle di instradamento diventerebbe altamente inefficiente e la loro dimensione potrebbe crescere a dismisura.
- Non rappresenta una soluzione accettabile!
 - Potrebbe essere utilizzato solo su reti di piccole dimensioni.

Lezione 4., v. 1.0

R. Bolla Arch. e Prot, Wireless n. o.

Nomi e indirizzi

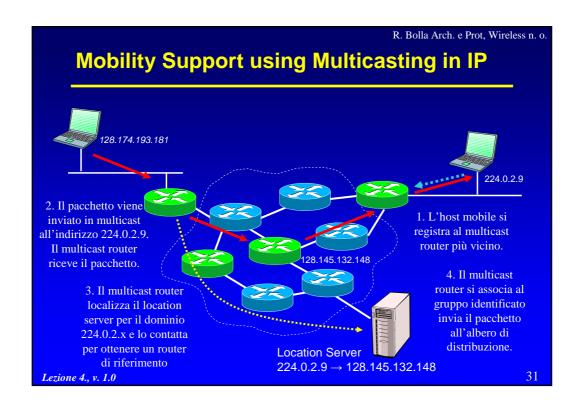
- Un nome rappresenta un identificatore di un host indipentente dalla sua locazione.
- Un indirizzo rappresenta la locazione di un host all'interno della rete.
- I nomi sono associati agli indirizzi attraverso un meccanismo di risoluzione distribuito: DNS.
- L'idea è quella di aggiornare dinamicamente gli indirizzi nei DNS.

Lezione 4., v. 1.0

14

Aggiornamento dinamico dei DNS

- Problemi:
 - storicamente il DNS non gestiva l'aggiornamento dinamico;
 - l'infrastruttura è stata creata per ottimizzare gli accessi, non l'aggiornamento;
 - le informazioni vengono mantenute nelle cache (dell'host e degli intermediari);
 - non esistono meccanismi per notificare l'aggiornamento di tale informazione.
- Il meccanismo di risoluzione non è in grado di risolvere il problema!


Lezione 4., v. 1.0 29

R. Bolla Arch. e Prot, Wireless n. o.

Approcci basati sul multicast

- Gli indirizzi multicast non dipendono dalla posizione degli host all'interno della rete.
- Il multicast prevede una infrastruttura efficiente per distribuire i flussi dati e aggiornare il numero e la posizione dei partecipanti:
 - diversi protocolli sono disponibili:» MOSPF, DVMRP, PIM, CBT.

Lezione 4., v. 1.0

Funzionalità dell'indirizzo IP
 La corrispondenza tra nome ed indirizzo è statica.
 L'indirizzo IP ha un ruolo doppio

 identificazione dell'host
 utilizzata soprattutto dai livelli superiori;
 instradamento
 necessaria per la consegna dei pacchetti.

 Può essere utile separare le funzionalità?

 IETF Name Space Research Group, "What's in a name: Thoughts from the NSRG".

 Lezione 4., v. 1.0

Separazione delle funzionalità dell'indirizzo

- Introduzione di un ulteriore livello di indirizzi
 - Nimrod, HIP, IPNL.
- Two-Tier Addressing
 - separazione dei due ruoli in altrettante funzionalità distinte
 - associare due indirizzi allo stesso host:
 - » uno (statico) viene utilizzato come identificatore;
 - » l'altro (dinamico) viene utilizzato per l'instradamento.

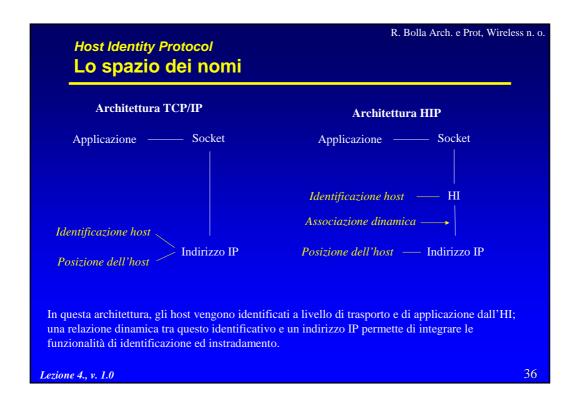
Lezione 4., v. 1.0

33

Host Identity Protocol

R. Bolla Arch. e Prot, Wireless n. o.

- Lo schema di indirizzamento in uso per Internet è ormai antiquato
 - è stato pensato per reti di host fissi;
 - è composto da due spazi principali
 - » indirizzi ip,
 - » nomi DNS (FQDN), comprendono identificativi email e SIP.
 - limitazioni di questo schema
 - » poco pratico per la mobilità, non prevede l'anonimato, non supporto l'autenticazione.
- HIP si pone come soluzione per
 - mobilità
 - sicurezza.


Lezione 4., v. 1.0

Host Identity Protocol Lo spazio dei nomi

R. Bolla Arch. e Prot, Wireless n. o.

- Introduce un nuovo spazio di nomi (*Host Identity*)
 - tra il livello di rete e trasporto;
 - può essere usato un qualsiasi identificatore univoco
 - » nella pratica è preferibile usare <u>una chiave pubblica</u> <u>associata all'host;</u>
 - possono essere pubbliche (assegnate da CA esterne e pubblicate in apposite directory) o anonime (assegnate dal singolo host).

Lezione 4., v. 1.0 35

Host Identity Protocol

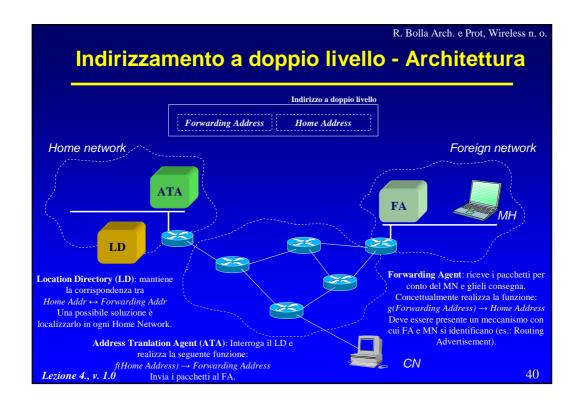
Host Layer Protocol

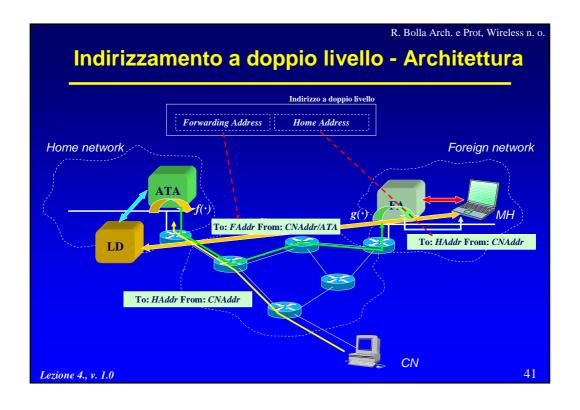
- L'Host Layer Protocol è responsabile della comunicazione tra le entità HI
 - autenticazione delle parti,
 - creazione di associazioni di sicurezza IPSec (SA)
 - » handshake a 4 vie basato sullo scambio di chiave Diffie-Hellman,
 - aggiornamento delle associazioni dinamiche (mobilità).
- L'identità HI può essere trasportata direttamente nell'intestazione ESP (Encapsulating Security Payload – IPSec)
- HIP prevede l'utilizzo di ESP per tutte le comunicazioni!

Lezione 4., v. 1.0

37

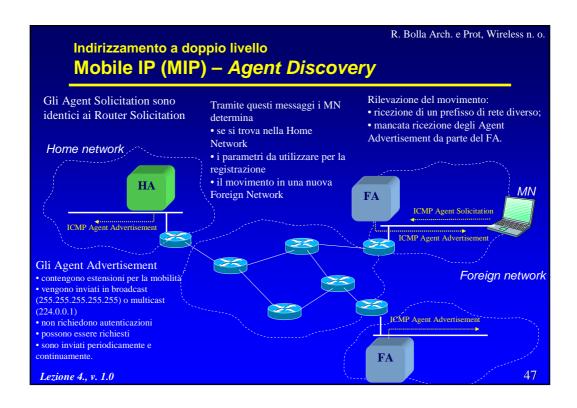
R. Bolla Arch. e Prot, Wireless n. o.

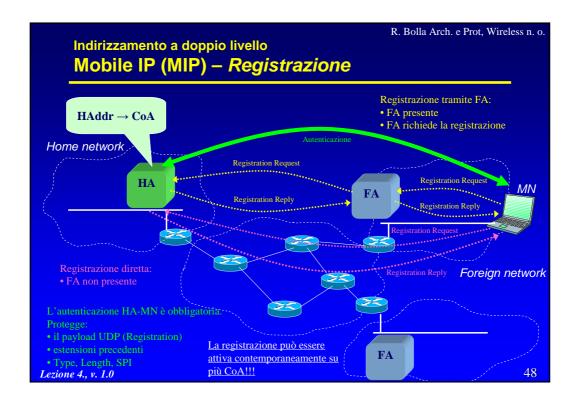

R. Bolla Arch. e Prot, Wireless n. o.

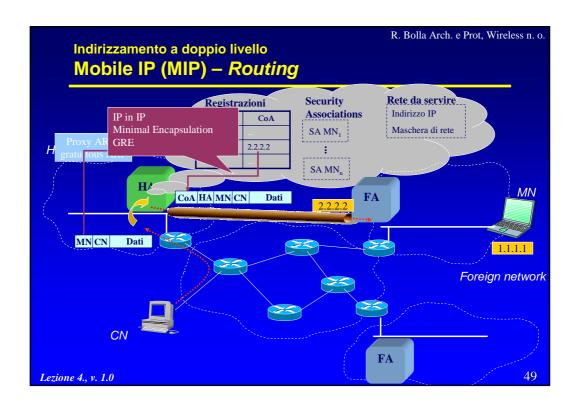

Host Identity Protocol

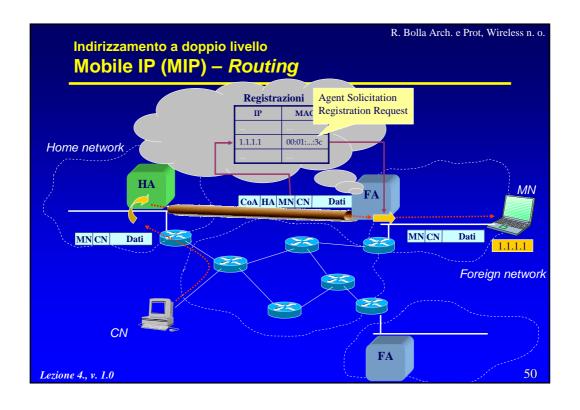
Vantaggi e limitazioni

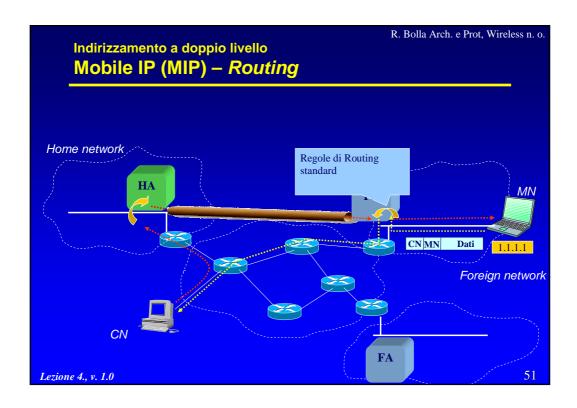

- Selezione ottima del percorso.
- Nessun overhead ad esclusione di IPSec.
- Stretta integrazione con IPSec.
- Poche implementazioni disponibili ed esperienze in questo ambito.
- Richiede modifiche radicali allo stack protocollare.
- Alto overhead per piccoli scambi dati (UDP).
- Problemi di scalabilità per l'infrastruttura DNS.

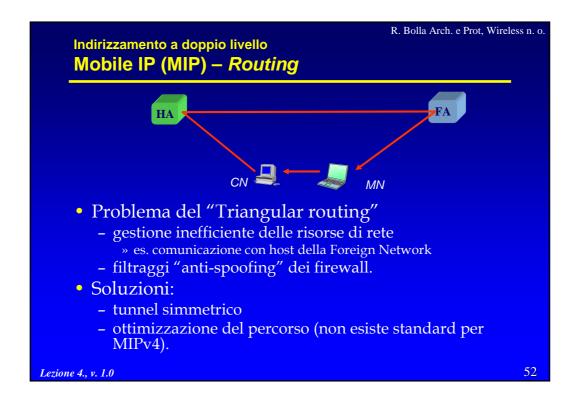

Lezione 4., v. 1.0

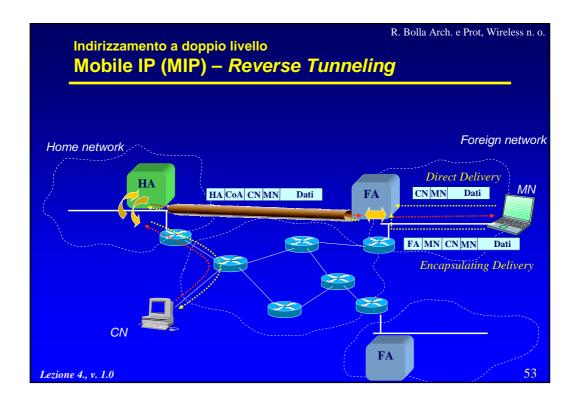


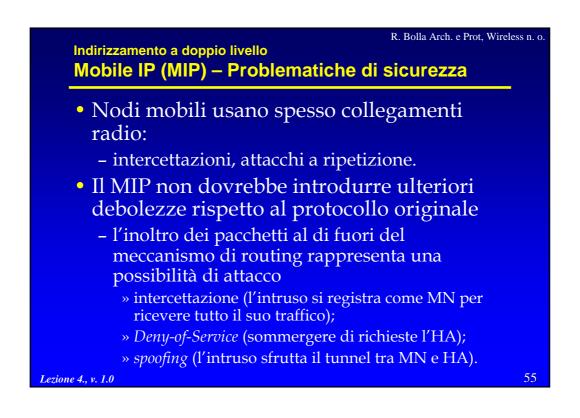












Indirizzamento a doppio livello

R. Bolla Arch. e Prot, Wireless n. o.

Mobile IP (MIP) - Meccanismi di sicurezza

- MIP prevede la sola autenticazione per i messaggi di registrazione
 - Security Association
 - » identificata da SPI e indirizzi IP;
- L'autenticazione può essere fornita:
 - tra MN e HA (obbligatoria);
 - tra HA e FA (facoltativa);
 - tra MN e FA (facoltativa).
- L'autenticazione avviene tramite le "Authentication Extension"
 - HMAC-MD5 con chiave a 128 bit.

Lezione 4., v. 1.0

56

R. Bolla Arch. e Prot, Wireless n. o.

Indirizzamento a doppio livello

Mobile IP (MIP) - Estensioni al meccanismo

- Il meccanismo base si presta bene per risolvere il problema della macromobilità
 - il protocollo è stato pensato in origine per il roaming.
- Ci sono significative limitazioni nel caso di frequenti modifiche nel punto di accesso
 - latenza, perdita di pacchetti, eccessivo traffico di segnalazione,
 - il ritardo nasce dallo scambio di messaggi tra MN/HA/FA necessario per aggiornare la posizione.
- In questo scenario sono più appropriati protocolli per la micromobilità
 - localizzazione in ambito locale.

Lezione 4., v. 1.0

Indirizzamento a doppio livello

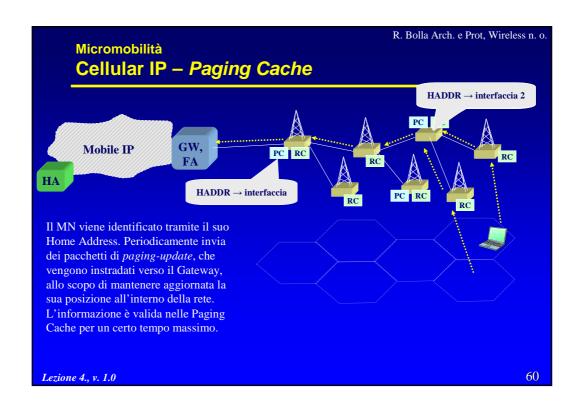
R. Bolla Arch. e Prot, Wireless n. o.

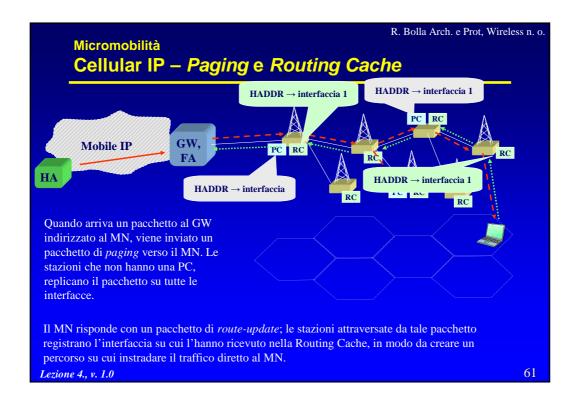
Mobile IP (MIP) - Estensioni al meccanismo

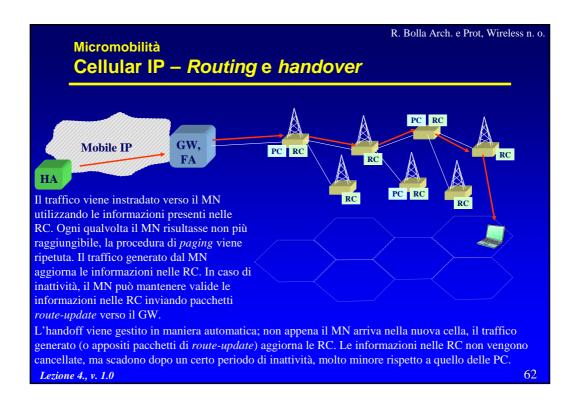
- Host-based routing
 - vengono mantenute informazioni di instradamento specifiche per singoli host;
 - Cellular IP, HAWAII.
- Hierarchical tunneling
 - l'instradamento avviene mediante tunnel tra diversi punti di riferimento (tipicamente FA) organizzati in modo gerarchico;
 - » MIP Regional Registration, IDMP.
- Smooth handover
 - i precedenti punti di accesso vengono istruiti per inoltrare i pacchetti diretti al vecchio CoA al nuovo CoA, eventualmente sfruttando meccanismi di livello due (trigger e invio simulaneo su più canali);
 - MIP Low Latency Handoff, MIP Fast Handovers.

Lezione 4., v. 1.0

58

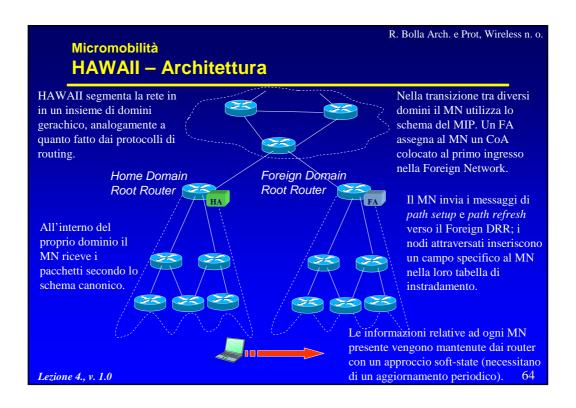

R. Bolla Arch. e Prot, Wireless n. o.


Micromobilità


Cellular IP

- Separa il problema della mobilità in due ambiti:
 - macromobilità: MobileIP
 - micromobilità: CellularIP.
- Cellular IP è ottimizzato per reti radio con elevata mobilità dei nodi.
- In analogia ai sistemi radiomobili cellulari:
 - la posizione è nota approssimativamente per gli host inattivi,
 - la posizione è aggiornata di continuo per gli host attivi.

Lezione 4., v. 1.0



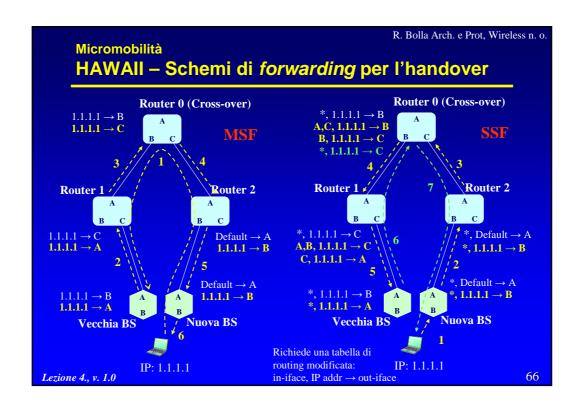
Micromobilità HAWAII

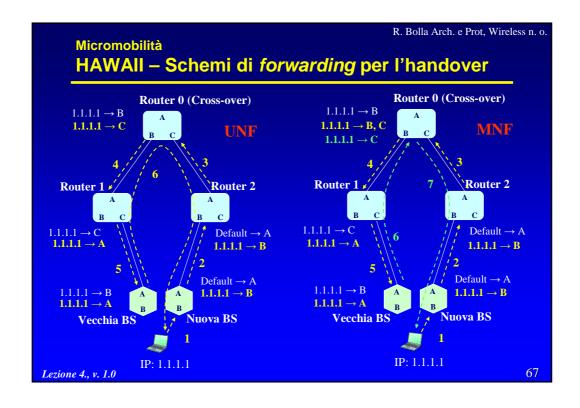
R. Bolla Arch. e Prot, Wireless n. o.

- Handoff-Aware Wireless Access Internet Infrastructure.
- Integra il MobileIP con uno schema di micromobilità.
- Sfrutta un approccio simile al Cellular IP:
 - mantenere lo stesso indirizzo IP all'interno di un dominio,
 - ogni router mantiene una informazione di localizzazione specifica per ogni MN presente.
- Ottimizzato per: limitare l'interruzione del traffico, scalabilità, QoS, affidabilità.

Lezione 4., v. 1.0

Micromobilità


HAWAII – Handover


- Il problema dell'handover si traduce in opportuni meccanismi di aggiornamento delle tabelle di instradamento dei router.
- Cross-over router: l'ultimo router presente sul tratto comune tra il precedente e il nuovo percorso tra DRR e MN.
- Schemi proposti:
 - forwarding scheme: Multiple Stream Forwarding e Single Stream Forwarding
 - » i pacchetti vengono inoltrati dalla precedente stazione base alla nuova prima di essere reindirizzati dal router di crossover;
 - non-forwarding scheme: Unicast Non-Forwarding e Multicast Non-Forwarding
 - » i pacchetti vengono reinstradati al router di cross-over.

Lezione 4., v. 1.0

65

R. Bolla Arch. e Prot, Wireless n. o.

Micromobilità

R. Bolla Arch. e Prot, Wireless n. o.

Mobile IP (MIP) - Smooth Handoff

- Mobile IP nasce per permettere il *roaming* dei terminali.
- La transizione senza interruzione tra due punti di accesso presenta delle problematiche relative
 - al rilevamento del movimento (cambiamento rete logica/FA);
 - configurazione dell'indirizzo (DHCP o CoCoA);
 - registrazione presso HA.
- La latenza complessiva è data dalla somma dei tre fattori.

Lezione 4., v. 1.0

78

Micromobilità

R. Bolla Arch. e Prot, Wireless n. o.

Mobile IP (MIP) - Smooth Handoff

- Anche la modifica nella connettività fisica introduce latenza. Per es. in 802.11
 - scansione degli AP disponibili;
 - selezione del nuovo AP;
 - associazione
 - » controllo di accesso (802.1X),
 - » autenticazione (802.11i).
- Mobile IP può controllare solo gli aspetti inerenti il livello di rete
 - Low Latency Mobile IPv4 Handoffs

Lezione 4., v. 1.0

Micromobilità

R. Bolla Arch. e Prot, Wireless n. o.

Mobile IP (MIP) - Low Latency Handoff

- Introduce nuovi elementi al protocollo:
 - *PrRtAdv* e *PrRtSol*, sono Agent Advertisement di una terza entità
 - » incorporano le estensioni *Generalized Link Layer and IPv4 Address* (*LLA*) per trasportare indirizzi IPv4 e di linea di qualsiasi tipo (Ethernet, IMSI, EUI-64, BSSID);
 - L2-triggers, indicazioni dal livello di linea
 - » MT (Mobile), ST (Source), TT (Target), LU (Link-Up), LD (Link-Down).
- Tre modalità di handover:
 - Pre-registration
 - Post-registration
 - Combinata.

Lezione 4., v. 1.0

80

Micromobilità

R. Bolla Arch. e Prot, Wireless n. o.

Mobile IP (MIP) - Limitazioni per handover

- Ogni meccanismo MIP per velocizzare l'handover consiste in una proposta
 - non sono ancora usati né testati approfonditamente.
- Tutti questi meccanismi si fondano sulla presenza di indicazione dal livello di linea
 - non tutti i livelli di linea potrebbero essere in grado di fornire questo tipo di informazione;
 - la latenza potrebbe essere comunque elevata.

Lezione 4., v. 1.0

R. Bolla Arch. e Prot, Wireless n. o.

Indirizzamento a doppio livello
Mobile IPv6 (MIPv6)

Stesso approccio di MIP

- gli aspetti peculiari di IPv6 migliorano il
meccanismo

» scompare la funzionalità di Foreign Agent;

» il CoA è sempre co-locato;


» supporto intrinseco alla ottimizzazione del percorso;

» sicurezza

• Modalità di registrazione

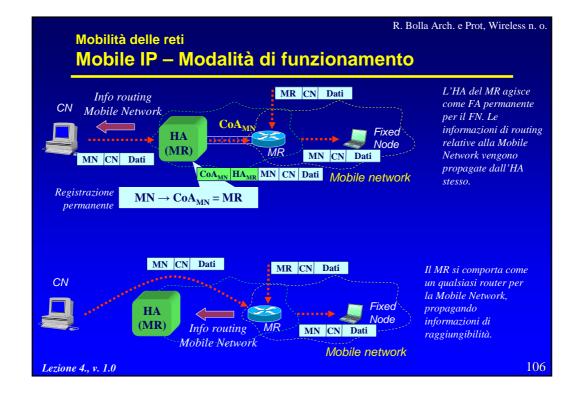
- Home Registration

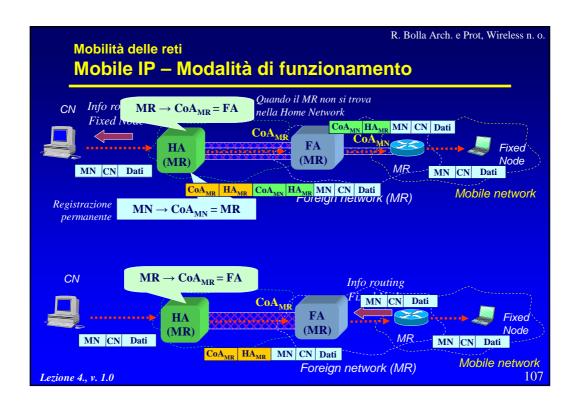
- Correspondent Registration

Mobilità delle reti

- Il problema della mobilità può coinvolgere intere reti
 - es. PAN/BAN: cellulare, palmare, portatile, ...
- In questa situazione è ragionevole pensare ad una soluzione diversa dal gestire la mobilità per ogni singolo nodo.
- IPv4: Mobile Router (MIP).
- IPv6: Network Mobility (NEMO).

Lezione 4., v. 1.0 103


Mobile IP


R. Bolla Arch. e Prot, Wireless n. o.

- Un *Mobile Router* è responsabile di gestire la mobilità di una o più reti che si muovono in modo congiunto.
- Un *Mobile Router* agisce come un qualsiasi nodo mobile, ma si comporta come router nei confronti delle sottoreti collegate.
- Il *Mobile Router* può operare come *Foreign Agent*, permettendo a nodi mobili di transitare nella rete mobile.

Lezione 4., v. 1.0

Mobilità delle reti Mobile IP • Due modalità di funzionamento: - i nodi della rete si comportano come nodi mobili registrati con CoA del MR; - il MR utilizza protocolli di routing standard attraverso il suo HA. • La mobilità della rete è trasparente ad eventuali nodi mobili presenti.

R. Bolla Arch. e Prot, Wireless n. o.

Mobilità del terminale

- Il problema della mobilità del terminale nelle reti dati può essere gestito:
 - a livello di linea:
 - » 802.11, 802.21
 - a livello di rete:
 - » Mobile IP, Cellular-IP, HAWAII;
 - a <u>livello di trasporto</u>:
 - » TCP-Migrate, MSOCKS (TCP Splice), SCTP;
 - a livello di applicazione:
 - » SIP.

Lezione 4., v. 1.0

114

R. Bolla Arch. e Prot, Wireless n. o.

Mobilità a livello di trasporto

- Transport Layer Mobility (TLM).
- Sposta la gestione del problema della mobilità a livello di trasporto (TCP/UDP):
 - ai livelli sottostanti rimanere l'onere di mantenere la connettività
 - » fisica: handover intra o inter-tecnologia,
 - » logica: acquisizione dei parametri IP (indirizzo, maschera di rete, gateway predefinito);
 - la mobilità non è più trasparente alle applicazioni.
- Da non confondere con la mobilità di sessione!

Lezione 4., v. 1.0

R. Bolla Arch. e Prot, Wireless n. o.

Mobilità a livello di trasporto

- Questo approccio permette
 - di applicare le procedure di mobilità in modo differenziato per le diverse connessioni
 - » in genere è vantaggiosa solo per connessioni lunghe;
 - alle applicazioni di scegliere lo schema di mobilità più appropriato;
 - di ottimizzare il comportamento delle applicazioni in funzione del movimento
 - » il TCP potrebbe ripartire con lo slow-start in seguito al movimento, non conoscendo lo stato di congestione del nuovo segmento di rete;
 - » applicazioni multimediali potrebbero modificare la trasmissione (es. codifica) in funzione della nuova tipologia di collegamento (banda, ritardo, latenza, affidabilità).

Lezione 4., v. 1.0 116

R. Bolla Arch. e Prot, Wireless n. o.

Mobilità a livello di trasporto

- Non sono richieste modifiche ai livelli sottostanti
 - questi meccanismi possono essere utilizzati su tutte le reti in esercizio.
- La gestione della mobilità può avvenire:
 - end-to-end, tutti i sistemi terminali devono essere modificati
 - » es.: TCP Migrate, mSCTP;
 - tramite intermediari, solo i sistemi mobili devono essere modificati
 - » es.: MSOCKS.

Lezione 4., v. 1.0 117

Mobilità a livello di trasporto

R. Bolla Arch. e Prot, Wireless n. o.

TCP Migrate

- Rappresenta un'estensione al TCP.
- L'architettura prevede:
 - indirizzamento dei terminali,
 - localizzazione degli host mobili,
 - migrazione della connessione.
- Indirizzamento
 - denota il punto di attacco dell'host alla rete
 - » l'indirizzo può essere assegnato dinamicamente (DHCP, configurazione senza stato) o manualmente.
- La localizzazione avviene tramite il DNS
 - le risoluzioni (record A) hanno TTL nullo
 - » non vengono mantenuti nelle cache intermedie
 - » i record NS hanno TTL più lungo
 - si evita l'interrogazione dei RNS.

Lezione 4., v. 1.0

118

R. Bolla Arch. e Prot, Wireless n. o.

Mobilità a livello di trasporto

TCP Migrate

- La migrazione della connessione rappresenta il punto più critico
 - ogni connessione TCP è identificata dalla quadrupla

<saddr, sport, daddr, dport>

- si introduce un *token* quale elemento descrittivo di ogni connessione instaurata

<saddr, sport, token>

- ogni richiesta di migrazione specifica il token
 - » il ricevente può così associare la richiesta ad una precedente connessione ed autenticarla.

Lezione 4., v. 1.0

Mobilità a livello di trasporto MSOCKS

R. Bolla Arch. e Prot, Wireless n. o.

- Prevede l'utilizzo di un intermediario.
- La connessione TCP viene spezzata (TCP-Splice):
 - tra MN e proxy;
 - tra proxy e CN.
- Il MN può utilizzare punti di accesso diversi per ogni singola connessione.
- Estende le funzionalità del protocollo SOCKS.
- Funziona anche in presenza di firewall/NAT.

Lezione 4., v. 1.0

Mobilità a livello di trasporto

R. Bolla Arch. e Prot, Wireless n. o.

MSOCKS – Considerazioni

- La concentrazione del traffico sul proxy
 - può creare limitazioni alla scalabilità;
 - può introdurre ulteriori latenze, soprattutto nella fase di recupero della connessione.
- Il livello di sicurezza è analogo a quello del protocollo SOCKS
 - pensato per attraversare un firewall.
- Le modifiche richieste agli host sono minime
 - la libreria Msocket può essere installata sui MN senza richiedere modifiche strutturali del SO.

Lezione 4., v. 1.0

126

Mobilità a livello di trasporto Mobile SCTP

R. Bolla Arch. e Prot, Wireless n. o.

- Le soluzioni "classiche" hanno riscosso scarso interesse:
 - a livello di rete (MIP) richiedono cambiamente architetturali;
 - a livello di trasporto (TCP Migrate) richiedono modifiche in protocolli largamente utilizzati.
- I dispositivi mobili in genere possono sfruttare contemporaneamente interfacce su reti diverse.
- Stream Control Transmission Protocol
 - orientato alla trasmissione di blocchi;
 - pensato per la trasmissione della segnalazione SS7 su reti a IP;
 - utilizza meccanismi di controllo di flusso e congestione simili a quelli del TCP;
 - separa le funzionalità di recupero di errore da quelle di sequenzializzazione della trasmissione;
 - prevede il *multihoming*.

Lezione 4., v. 1.0

Mobilità a livello di trasporto Mobile SCTP

R. Bolla Arch. e Prot, Wireless n. o.

- Lo schema del Mobile SCTP è in grado di mantenere la connettività se uno solo dei due nodi è mobile
 - lo schema non funzionerebbe nel caso di mobilità simultanea dei due nodi.
- Possibili integrazione del meccanismo:
 - ulteriori estensioni (Mobile SCTP+);
 - Mobile IP;
 - DNS dinamico;
 - RSerPool.

Lezione 4., v. 1.0

129

Mobilità del terminale

R. Bolla Arch. e Prot, Wireless n. o.

- Il problema della mobilità del terminale nelle reti dati può essere gestito:
 - a livello di linea:
 - » 802.11, 802.21
 - a livello di rete:
 - » Mobile IP, Cellular-IP, HAWAII;
 - a livello di trasporto:
 - » TCP-Migrate, MSOCKS (TCP Splice), SCTP;
 - a livello di applicazione:
 - » SIP.

Lezione 4., v. 1.0

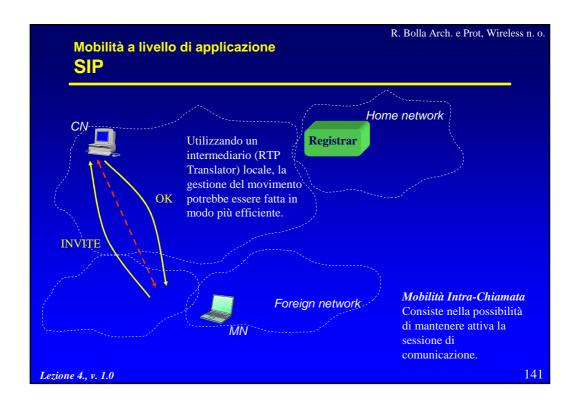
R. Bolla Arch. e Prot, Wireless n. o.

Mobilità a livello di applicazione

- Le applicazioni hanno maggior libertà nel controllare se e come gestire la mobilità.
- Separazione delle funzionalità di
 - identificazione: URL e DNS;
 - instradamento: architettura IP.
- Soluzione distribuita
 - si evita il problema del triangular routing;
 - si evita di avere un punto critico o collo di bottiglia;
 - minor overhead e latenze nella comunicazione.
- Maggior semplicità nell'implementazione (non richiede modifiche ai SO).
- Ogni applicazione deve essere in grado di gestire la mobilità.
- La gestione della micromobilità richiede comunque la presenza di appositi intermediari.


Lezione 4., v. 1.0 137

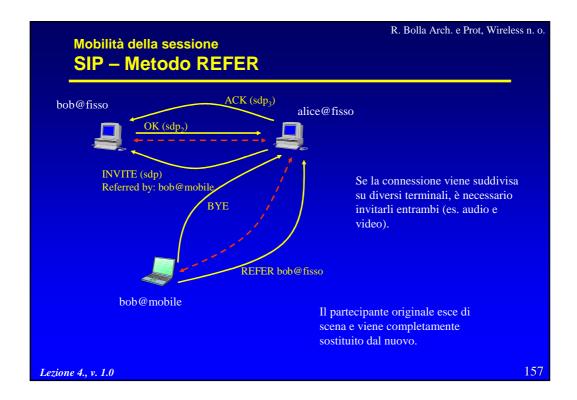
R. Bolla Arch. e Prot, Wireless n. o.


Mobilità a livello di applicazione

- Non esistono schemi universali per gestire la mobilità del terminale a livello di applicazione
 - ogni meccanismo dipende intrinsecamente dalla caratteristiche dell'applicazione stessa,
 » per es. utilizzo di TCP o UDP;
 - diverse applicazioni hanno una diversa sensibilità all'interruzione del servizio
 - » es. navigazione web (HTTP), risoluzione dei nomi (DNS), VoIP (SIP/H323, RTP), ecc.
- SIP è una applicazione per cui la mobilità è stata prevista in tutte le sue accezioni.

Lezione 4., v. 1.0


Mobilità della sessione Indica la capacità di trasferire una sessione di comunicazione da un terminale all'altro. È strettamente correlato ad una visione che pone l'utente al centro del sistema l'applicazione segue l'utente, non il terminale. Non è possibile realizzarla a tutti i livelli necessita di individuare un "contesto"; in genere è possibile solo per i livelli di trasporto e applicazione.


Mobilità della sessione SIP

R. Bolla Arch. e Prot, Wireless n. o.

- SIP è un protocollo in grado di gestire la mobilità della sessione
 - call-center con smistamento delle chiamate;
 - migrazione della sessione su un diverso terminale.
- SIP prevede due modalità per migrare una sessione
 - controllata da terza parte;
 - tramite il metodo REFER.

Lezione 4., v. 1.0

