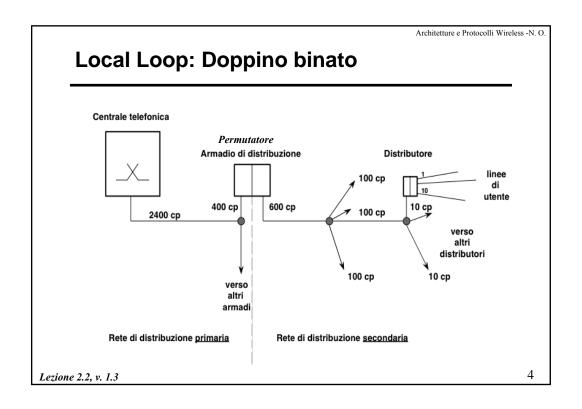
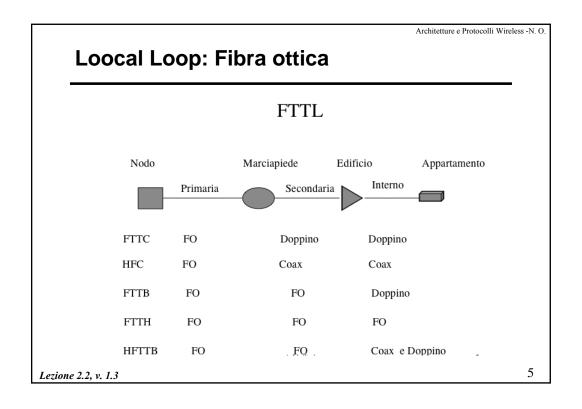
Università di Genova Facoltà di Ingegneria

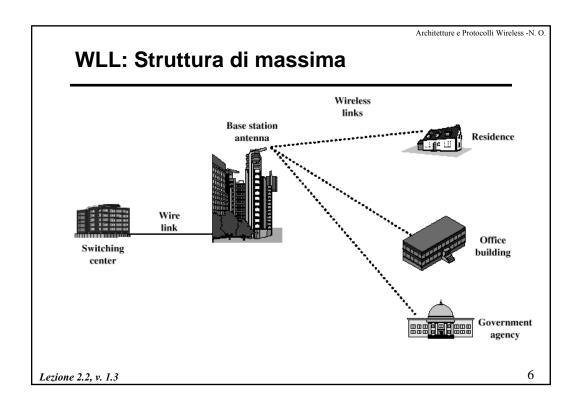
Architetture e Protocolli per Reti Wireless

2. Reti Wireless in area locale, personale e d'accesso 2.2 Reti d'accesso wireless (standard IEEE 802.16)

Prof. Raffaele Bolla




Architetture e Protocolli Wireless -N. O.


WirelessLAN

- Le reti d'accesso è quella parte di una rete pubblica che raccoglie il traffico direttamente dall'utente, fornendolo in forma aggregata alle rete di core detta "rete di trasporto".
- La componete più critica della rete di accesso è quella più periferica (vicina all'utente), il così detto *Local Loop* o rete di distribuzione.
- Si tratta di una parte molto costosa perché deve connettere molti utenti distribuiti sul territorio, ognuno dei quali genera (in linea di massima) poco traffico.
- Attualmente in Italia tale rete è in larga parte realizzata tramite i doppini telefonici di Telecom Italia.

			Archite	tture e Protocolli Wireless -N. O		
Local Loop: Tecnologie						
Operatore	Tecnologia	Servizio				
		Telefonia	Diffusivo	Dati (velocità)		
Telefonico	Doppino	Una o due linee	VoD	HDSL, ADSL		
TV via Cavo	Coassiale	Una o due linee	≥ 50 canali	Alta, asimm.		
Dati	Fibra ottica	Una o più linee	VoD, ≥ 50 canali	Alta/ altissima		
Cellulare	GSM, EDGE	Una linea	No	Bassa		
Cellulare	3G	Una linea	No	Media		
Satellite	Satellite	No	≥ 50 canali	Solo downlink		
WirelessLL	WLL	SI	≥ 50 canali	Medio-alta		
Lezione 2.2, v. 1.3		-1	I	3		

WLL: vantaggi

- **Costo**: i costi del wireless sono sicuramente inferiori ad un qualunque sistema cablato (non è vero per i soli apparati).
- **Tempo di installazione**: molto inferiore al punto da rendere convenienti anche installazioni temporanee.
- **Selettivo**: gli apparati e la rete vengono installati ed attivati al momento del bisogno e solo a chi ne ha necessità. Il cablaggio deve invece essere predisposto in anticipo.

Lezione 2.2, v. 1.3

_

Architetture e Protocolli Wireless -N. O.

Tecnologie

- Le tecnologie per questo contesto sono sostanzialmente tre:
 - Multichannel Multipoint Distribution Service (MMDS)
 - Local Multipoint Distribution Service
 - IEEE802.16 Fixed Broadband Wireless Access Standard

Lezione 2.2, v. 1.3

MMDS

- Nasce intorno in USA intorno agli anni '70 come tecnologia alternativa al cavo coassiale per distribuire canali televisivi.
- Pensata anche per uno scambio dati bidirezionale, è diventata nel tempo un alternativa per il Local Loop.
- In USA ha una serie di spazi dedicati nello spettro che si collocano nell'area dei 2,5 GHz
- Permette di raggiungere (a partire dal punto di distribuzione) distanze fino a 50 Km, ma le antenne degli utenti devono essere "in vista".

Lezione 2.2, v. 1.3

_

Architetture e Protocolli Wireless -N. O.

MMDS

- La velocità massima per canale è di 27 Mbps, con una capacità per singolo utente compresa fra 300 Kbps e 3 Mbps.
- Rispetto a LMDS
 - ha lo svantaggio di fornire capacità più basse
 - Grazie all'uso di frequenze più basse ha i seguenti vantaggi
 - » Può andare più lontano
 - » Gli apparati sono meno costosi
 - » Il segnale non viene bloccato facilmente da oggetti o disturbato da alberi

LMDS

- Nasce da subito come sistema per fornire sia servizi televisivi che collegamenti dati bidirezionali ad alta velocità
- E' principalmente caratterizzato dall'uso di frequenze nell'area dei 30-40 GHz.
- Offre capacità più elevate rispetto al MMDS e supporta anche i servizi telefonici ma
 - Copre un area decisamente più ridotta (2-4 Km)
 - Non può attraversare ostacoli
 - E' disturbato in modo significativo dagli alberi

Lezione 2.2, v. 1.3

Architetture e Protocolli Wireless -N. O.

IEEE 802.16

- Il Work-Group 802.16 è stato creato con lo scopo di standardizzare l'accesso wireless (WLL) in ambito metropolitano con infrastrutture fisse (WirelessMAN).
- La pubblicazione dello standard risale all'Aprile 2002.
- Una prima estensione 802.16a è stata pubblicata nel Gennaio 2003 (funzionamento nella banda 2-11 GHz).
- Nell'Aprile 2001 è nato il forum industriale WiMAX che affianca le attività di standardizzazione

IEEE 802.16 – Obiettivi specifici

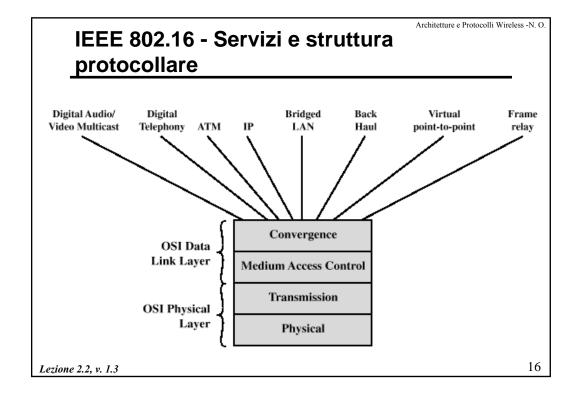
- Utilizzare onde radio milli e micrometriche.
- Estensione in area metropolitana.
- Fornire accesso pubblico a pagamento.
- Utilizzare una architettura punto-multipunto con antenne in visibilità.
- Fornire il supporto con QoS ad un traffico eterogeneo.
- Trasmissioni a banda larga (> 2 Mbps).

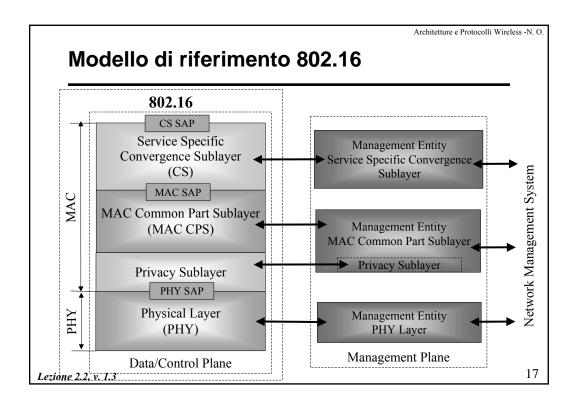
Lezione 2.2, v. 1.3

13

Architetture e Protocolli Wireless -N. O.

IEEE 802.16 - Caratteristiche


- Architettura centralizzata (point-to-multipoint)
 - un centro posto sulla cima di un edificio alto (o di un traliccio) raccoglie e distribuisce informazione da e verso i singoli utenti
 - modello tipico dei sistemi cellulari;
 - controllo degli accessi da parte del gestore;
 - limitazione del tempo di guardia per i ritardi di tx;
 - le estensioni permettono anche una forma più distribuita.
- Supportare diversi livelli fisici.
- Infrastruttura fissa.


Lezione 2.2, v. 1.3

IEEE 802.16

- IEEE 802.16 in sostanza standardizza l'interfaccia radio del LMDS definendo
 - Il livello fisico
 - Il livello MAC

Standard	Scope		
IEEE 802.16	Medium access control (MAC): one common MAC for wireless MAN standard Physical layer: 10 to 66 GHz	S	
IEEE 802.16a	MAC modifications to 802.16.1 Physical layer: 2 to 11 GHz		
IEEE 802.16c	Detailed System Profiles for 10–66 GHz		
IEEE 802.16e	Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands		
IEEE 802.16.2	Coexistence of Fixed Broadband Wireless Access Systems		
Lezione 2.2, v. 1.3		15	

802.16 - Servizi

- I requisiti di 802.16 sono stati definiti in termini dei servizi che deve supportare
 - Circuit Based, connessioni tra le stazioni;
 - Variable Packet, ad esempio IP e Frame Relay;
 - Fixed Packet, ad esempio ATM.
- Le specifiche di QoS per ogni tipologia di traffico sono definite in termini di
 - ampiezza di banda (bitrate);
 - tasso di errore consentito (BER);
 - ritardo tollerabile.

Lezione 2.2, v. 1.3

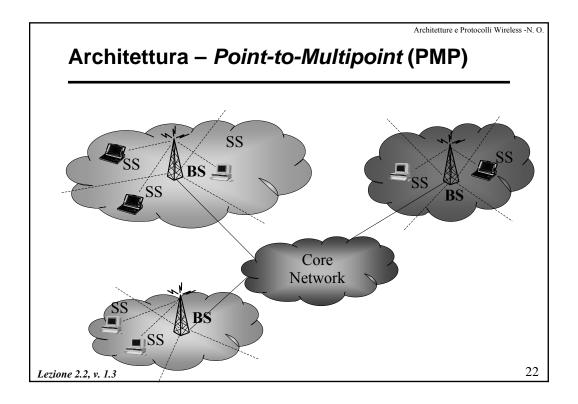
802.16 - Servizi

- Servizi specifici
 - distribuzione multicast di audio/video» radio e televisione, teleconferenze a due vie;
 - telefonia;
 - trasporto di traffico ATM;
 - trasporto di traffico IP;
 - trasporto di traffico Frame Relay;
 - servizio bridged LAN;
 - servizio back-haul
 - » servizio di connettività per BS radiomobili.

Lezione 2.2, v. 1.3

19

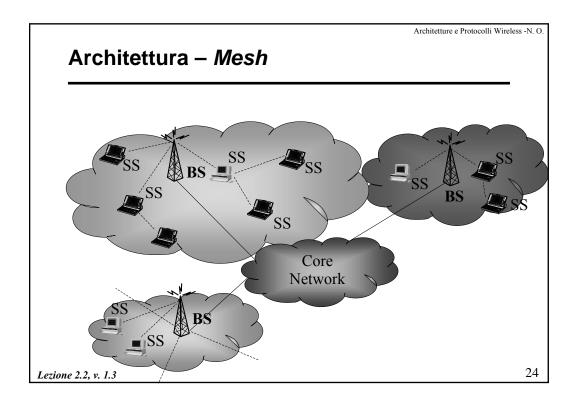
Architetture e Protocolli Wireless -N. O.


Architettura

- L'architettura dell'802.16 prevede la presenza di due tipologie di stazioni
 - Base Station (BS), rappresentano un punto di accesso centrale, collegato con altre tipologie di reti esterne;
 - *Subscriber Station* (SS), costituite dagli apparati degli utenti che vogliono accedere alla rete.
- Due strutture architetturali sono previste:
 - Point-to-Multipoint;
 - Mesh.

Lezione 2.2, v. 1.3

Architettura - Point-to-Multipoint (PMP)


- Point-to-Multipoint (PMP)
 - una stazione centrale (*Base Station*) coordina la trasmissione delle stazioni associate (*Subscriber Station*)
 - » la BS gestisce un canale punto-multipunto operando una divisione di spazio mediante antenne direttive,
 - » le SS accedono al canale condiviso richiedendo la banda alla BS
 - diversi meccanismi di scheduling permettono di ottenere servizi con diversi requisiti in termini di QoS,
 - · la QoS è assicurata su base flusso;
 - la comunicazione avviene solo tra BS e SS (come nei sistemi cellulari);
 - architettura obbligatoria.

Architettura - Mesh

Mesh

- le singole SS possono comunicare tra loro;
- anche SS non direttamente comunicanti con la BS possono entrare nella rete;
- la QoS viene fornita indipendentemente ad ogni pacchetto
 - » non esiste un concetto di servizio al flusso,
 - » le informazioni sono inserite nell'header MAC;
- tipicamente prevedono l'utilizzo di antenne omnidirezionali;
- il supporto è opzionale.

Il livello fisico

- Lo standard prevede la possibilità di utilizzare diversi livelli fisici:
 - diverse bande
 - » 10-66 GHz o 2-11 GHz,
 - diverse tecniche trasmissive
 - » Single Carrier, OFDM.
- Definisce quindi un insieme di livelli fisici alternativi:
 - <u>WirelessMAN-SC</u> (802.16);
 - WirelessMAN-SCa (802.16a);
 - WirelessMAN-OFDM (802.16a);
 - WirelessMAN-OFDMA (802.16a);
 - WirelessHUMAN (802.16a).

Lezione 2.2, v. 1.3

Architetture e Protocolli Wireless -N. O.

25

Le bande utilizzabili

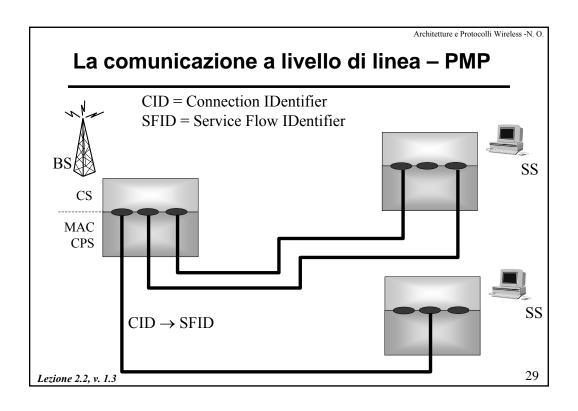
- Banda 10-66 Ghz
 - è richiesto un percorso "line-of-sight"
 - » permette di raggiungere una alta qualità del segnale,
 - » permette di garantire una elevata disponibilità del servizio
 - · si prevedono celle di diametro pari a 2-3 km,
 - » lunghezza d'onda molto corta (attenuazioni),
 - » il multipath è minimizzato
 - l'interferenza intersimbolo è una conseguenza del multipath residuo;
 - WirelessMAN-SC, sistema a singola portante;
 - i canali tipicamente sono a banda larga
 - » es. 25 o 28 Mhz,
 - » 120 Mbit/s;
 - applicazioni da piccoli (SOHO) a larghi uffici.

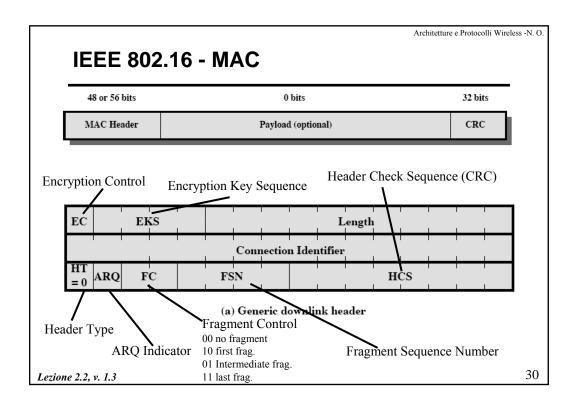
Lezione 2.2, v. 1.3

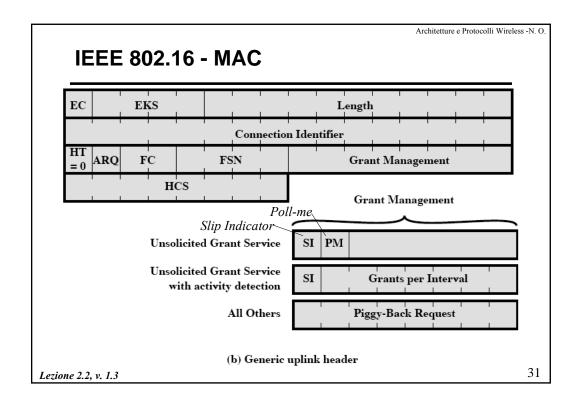
Le bande utilizzabili

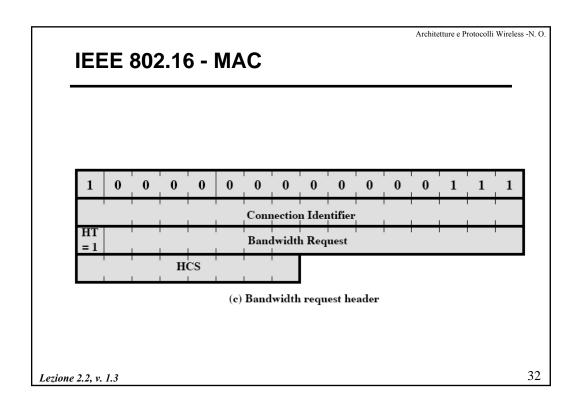
- Banda 2-11 Ghz
 - non necessitano di un percorso diretto (LOS);
 - il multipath può essere significativo;
 - lo scenario fisico richiede
 - » un accurato controllo di potenza;
 - » controllo delle interferenze;
 - » utilizzo di antenne multiple;
 - diversi livelli fisici definiti:
 - » WirelessMAN-SCa, sistemi a singola portante;
 - » WirelessMAN-OFDM e WirelessMAN-OFDMA, sistemi a multiportante;
 - » Wireless HUMAN, uno qualsiasi dei livelli precedenti con ulteriori vincoli per la convivenza con altri sistemi nelle bande unlicensed.

Lezione 2.2, v. 1.3


27


Architetture e Protocolli Wireless -N. O.


IEEE 802.16 - MAC


- Il livello MAC è orientato alla connessione, quindi due entità MAC (la STS e la BTS) devono prima aprire una connessione logica per potersi scambiare dati.
- Ogni connessione ha associato un flusso, che a sua volta è l'elemento a cui si associa una Qualità di Servizio (QoS).
- La BTS si preoccupa di allocare la banda sia in *upstream* che in *downstream* ai flussi in base alla QoS corrispondente.

Lezione 2.2, v. 1.3

Scheduling

- L'individuazione di diverse tipologie di servizi di scheduling permette di ottimizzare l'efficienza della richiesta di banda
 - Unsolicited Grant Service (UGS);
 - Real-Time Polling Service (rtPS);
 - Non-Real-Time Polling Service (nrtPS);
 - Best Effort (BE).