Università di Genova Facoltà di Ingegneria

Telematica 2. Architetture

Prof. Raffaele Bolla

Contenuti

- Organismi di standardizzazione
- Definizione di Architettura funzionale
- OSI
- Internet (TCP/IP suite)
- ATM

Organismi di Standardizzazione (Cont.)

- International Organization for Standardization (ISO)
 Standard: OSI, HDLC, TP, ...
- International Telecommunication Union (ITU) di cui faceva parte il Comité Consultatif International Télégraphique et Téléphonique (CCITT), ora ITU-T

Standard: Serie V, Serie X (X.25, X.21, X.200, ..., X.400,...), ...

2.3

Organismi di Standardizzazione (Cont.)

 American National Standard Institute (ANSI)

Standard: T1, FDDI, ...

- Electronic Industries Association (EIA) Standard: RS-232, RS-422, RS-423, RS-449, ...
- Institute of Electrical and Electronic Engineers (IEEE)

Standard: IEEE 802, ...

Organismi di Standardizzazione (cont.)

- Internet Society (ISOC) Internet Engineering Task Force (IETF)
- ATM Forum
- European Telecommunication Standard Institute (ETSI)
- Commission Européenne des Postes et Télécommunications (CEPT)
- National Bureau of Standards (NBS)
- International Electrotechnical Commission (IEC)

2 5

Telematica

Architetture

- Organismi di standarizzazione
- <u>Definizione di Architettura</u> <u>funzionale</u>

- OSI
- Internet (TCP/IP suite)
- ATM

Architetture Funzionali

 La realizzazione di servizi di rete richiede INTERAZIONE TRA PROCESSI APPLICATIVI

 Ai processi applicativi <u>non interessa</u> nè la struttura della rete nè i dettagli del trasferimento dell'informazione

27

Architettura Funzionale

- Una ARCHITETTURA FUNZIONALE è
 - una particolare strutturazione in livelli funzionali o "strati" (Layers) delle funzioni di telecomunicazione
 - e per ogni strato i relativi protocolli, vale a dire le regole tramite le quale i processi interagiscono per risolvere un problema.

Vantaggi della stratificazione

- Operatività e struttura interne di ogni strato indipendenti
- Interazione tramite servizi
- Facilità di cambiamenti di uno strato senza influenzare gli altri
- Diversi protocolli per compiti specifici con complessità più trattabile

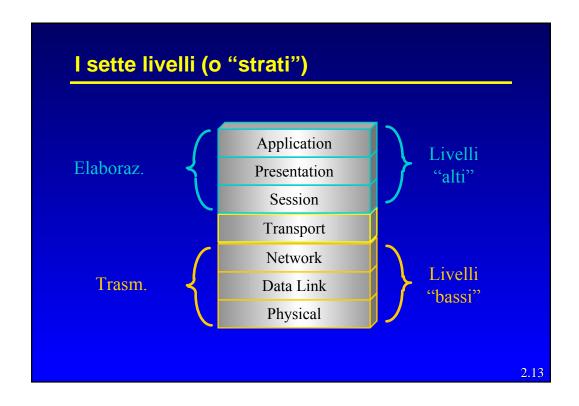
2.9

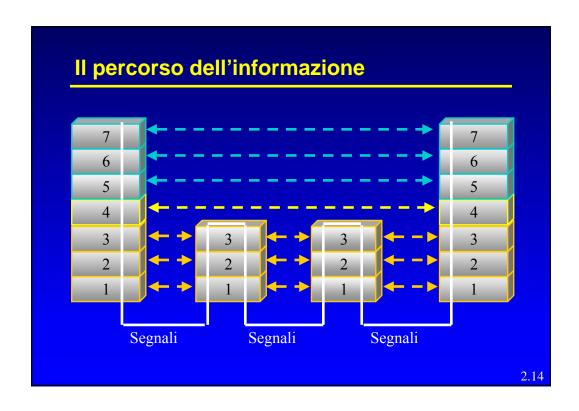
Protocolli

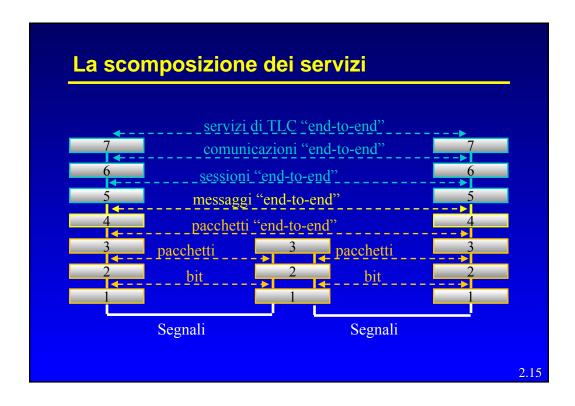
- Sono sostanzialmente delle procedure operative costituite da
 - Una semantica ossia l'insieme delle richieste che una parte può emettere (comandi), delle azioni conseguenti e delle risposte di ritorno
 - Una **sintassi**, ossia la struttura dei comandi e delle risposte
 - Una **temporizzazione**, ossia la specifica delle possibile sequenze temporali di emissione dei comandi/risposte

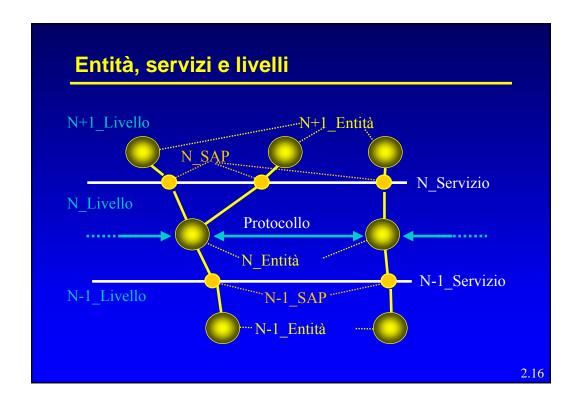
Architetture Organismi di standarizzazione Definizione di Architettura funzionale OSI Internet (TCP/IP suite) ATM LAN (IEEE 802)

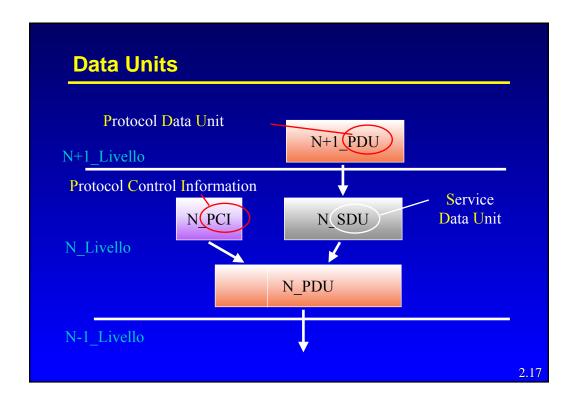
ISO-OSI

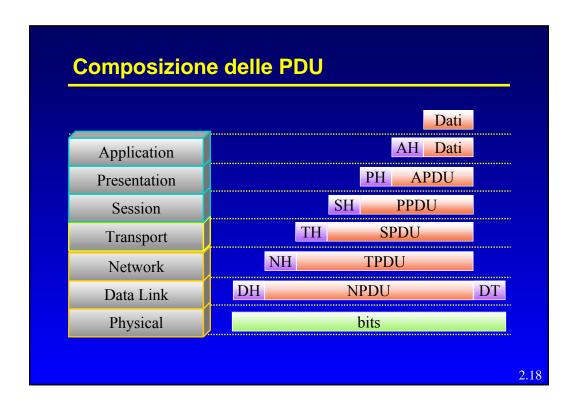

A seguito


- Odella nascita e dello sviluppo delle architetture proprietarie
- Odell'esperimento dell'ARPAnet


verso la fine degli anni '70 è iniziato un processo di standardizzazione che ha portato nel 1983 alla approvazione da parte dell'ISO (e CCITT come X.200) del


Reference Model for Open Systems Interconnection (OSI)


2.12



Concetti RM-OSI

- Strutturazione Funzionale (layering)
- Servizi
- Funzioni
- Protocolli

2.19

Livello Fisico

Tutto ciò che riguarda le caratteristiche meccaniche, elettriche, funzionali e procedurali del circuito fisico di interconnessione

ad esempio

- livello dei segnali
- tipo, dimensione ed impedenze dei cavi
- tipo dei connettori

Livello di Linea

(Cont.)

Deve provvedere alla

trasmissione sequenziale e senza errori

dei "blocchi" di dati sulle singole linee della rete

2.21

Livello di Linea

(Cont.)

- Deve quindi svolgere funzioni di
 - delimitazione delle unità dati framing
 - rivelazione di errore *error detection*
 - recupero di errore error recovery
 - controllo di flusso. *flow control*

Livello di Linea

(Cont.)

- Il servizio offerto su linee punto-punto garantisce, di solito, il recupero di errore in maniera trasparente.
- Su alcune linee multipunto può essere realizzata solo la rivelazione dell'errore.

2.23

Livello Linea

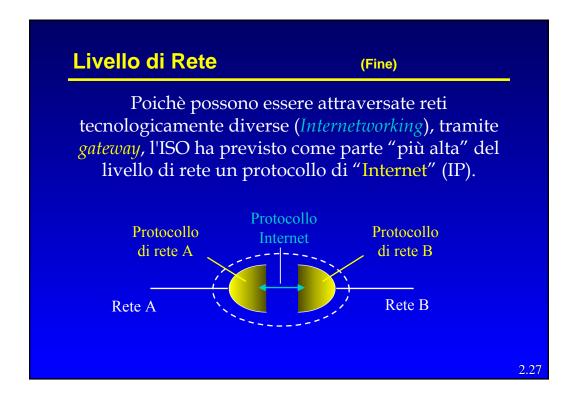
(Fine)

- Le linee multipunto (e.g., reti locali) richiedono comunque un controllo dell'accesso al mezzo trasmissivo (protocollo di accesso multiplo). In tal caso si distinguono due sottolivelli:
 - Medium Access Control (MAC)
 - Logical Link Control (LLC)

Livello di Rete

(Cont.)

Deve provvedere al servizio effettivo di comunicazione per i propri utenti (entità di trasporto), svolgendo le funzioni di


commutazione e instradamento.

2.25

Livello di Rete

(Cont.)

- Deve quindi "mascherare" al livello di trasporto i dettagli di funzionamento delle reti sottostanti (non la qualità del servizio!)
- A seconda del servizio (datagram o VC), può anche garantire l'inoltro ordinato dei pacchetti ed il controllo di flusso selettivo (per connessione).

Livello di Trasporto

(Cont.)

Con <u>diversa complessità a seconda del</u> <u>servizio di rete sottostante</u>, deve fornire ai propri utenti (le entità di sessione) un servizio di

trasferimento dei dati affidabile e trasparente

Livello di Trasporto

(Cont.)

E' il primo al di sopra dei livelli "bassi" (di rete) con significato "end-to-end" e le cui entità risiedono unicamente nei sistemi terminali cooperanti.

2.29

Livello di Trasporto

(Fine)

Deve quindi essere in grado di recuperare situazioni quali

- la duplicazione
- la perdita
- la mancata sequenzializzazione

di blocchi di dati. Deve poter garantire un certo livello di Qualità del Servizio (negoziabile), attraverso le funzioni di controllo di flusso, controllo di errore, splitting, multiplexing, ...

Livello di Sessione

(Cont.)

Deve consentire alle entità di presentazione un

dialogo strutturato e organizzato

attraverso meccanismi di sincronizzazione

2.31

Livello di Presentazione

(Cont.)

Fornisce i mezzi per stabilire una

Sintassi Comune

per mantenere la significatività della rappresentazione fra sistemi che operano con rappresentazioni dati differenti

Livello di Applicazione (Cont.)

- In questo livello si possono distinguere
 - Common Application Service Elements (CASE)
 - Specific Application Service Elements (SASE)

2.33

Livello di Applicazione (Fine)

• In questo livello risiedono anche i protocolli di

GESTIONE (*Management*)

 Tali protocolli hanno accesso alle "componenti" di gestione degli altri livelli (nello stesso sistema) attraverso opportune interfacce

Telematica

Architetture

- Organismi di standarizzazione
- Definizione di Architettura funzionale
- OSI
- Internet (TCP/IP suite)



ATM

2.35

Introduzione a Internet

- Nelle reti dati è avvenuto uno sviluppo non omogeneo dovuto a
 - problemi tecnologici
 - problemi economici
 - presenza di molti produttori

Introduzione a Internet

Il problema di interconnettere fra loro reti differenti prende il nome di

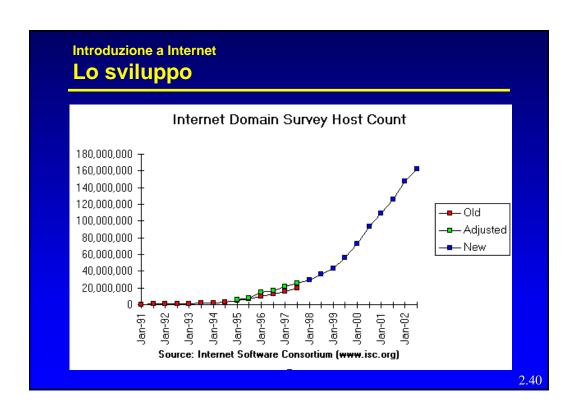
Internetworking

2.37

Introduzione a Internet

La storia

• 1950 *Sputnik* russo Nasce ARPA (*Advanced Research Projects Agency*), sotto il controllo del DoD (*Department of Defense*)


• '60 il programma spaziale abbandona i militari per diventare civile con la NASA

ARPA modifica i suoi obiettivi, uno dei quali diventa la scienza dell'informazione. (DoD era il maggior utilizzatore di computer del mondo, sentiva la necessità di avere una rete su ampia scala geografica)

Introduzione a Internet **La storia**

- Fine degli anni '60 ARPA studia e realizza ARPANET (ARPA Network), una delle prime reti dati a pacchetto di tipo WAN.
- Questo tipo di rete diventa un eccezionale banco di ricerca e sperimentazione per le reti a pacchetto
- Attraverso di essa vengono anche collegate moltissime università e centri di ricerca (degli USA).
- Nel 1983 la rete viene divisa in due parti: una per la ricerca, che mantiene il nome di ARPANET ed una per i militari che prende il nome di MILNET.

Introduzione a Internet

Lo sviluppo

- Il numero di sistemi informatici collegati a Internet è passato da 213 nell'agosto '81 a 313.000 dell'ottobre '90, 3.500.000 del luglio '94 e a quasi 60.000.000 a metà del '99.
- Attualmente il numero di host stimato sulla rete è di 162,128,493 (Luglio 2002)
- Il ritmo di crescita è stimato in oltre 4.000 nuovi nodi al giorno.
- Le misure di cui alla figura precedenti sono presenti sul sito www.nw.com, e vengono effettuate tramite interrogazioni ai vari host sulla rete.

2.41

Introduzione a Internet

La tecnologia

La fase di ricerca e sperimentazione su ARPANET ha dato origine una tecnologia composta da una architettura e da una serie di regole di comunicazioni (protocolli)

> TCP/IP Protocol Suite o anche DoD Suite

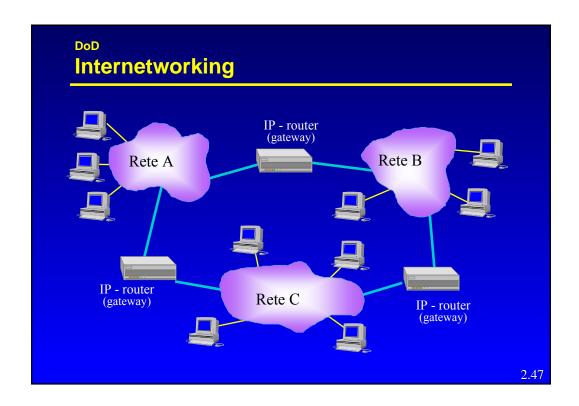
Introduzione a Internet Internet

- Internet, in sostanza, è quindi due cose:
 - da un lato una WAN a commutazione di pacchetto la cui estensione è diventata enorme e che collega decine di milioni di computer in tutto il mondo.
 - una tecnologia composta da una architettura e da regole di comunicazioni (protocolli) TCP/IP suite che sono diventati uno standard "de facto" in tutto il mondo.

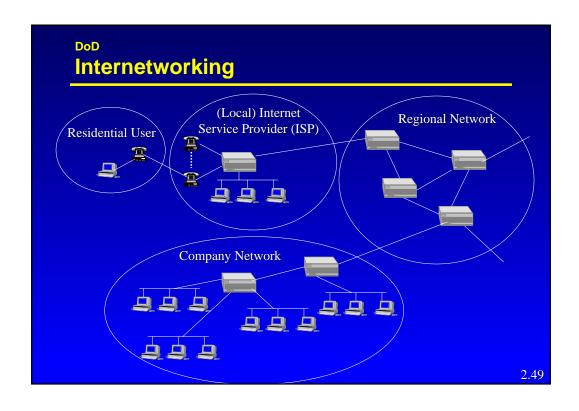
2.43

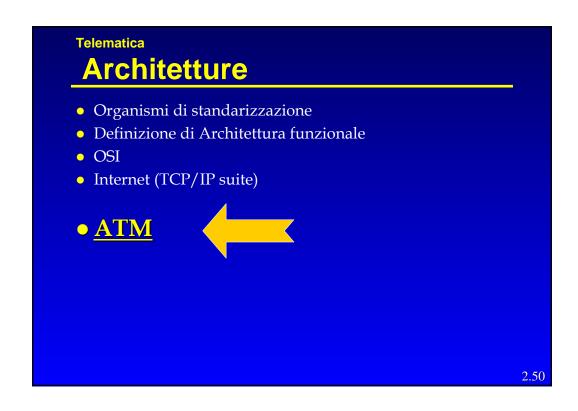
La filosofia di Internet

- La tecnologia di Internet è nata sulla base di due assunti:
 - Nessun tipo di rete è in grado di servire tutti i tipi di utenti (in modo efficace);
 - -Gli utenti vogliono un rete di interconnessione universale;


TCP/IP suite

- Viene anche chiamata *Internet Protocol Suite* o *DoD Architecture*
- Si tratta di una architettura del Department of Defense (DoD) degli U.S.A., che deriva dall'esperienza del progetto ARPANET
- ARPANET è la rete antesignana di Internet; quest'ultima è basata sulla architettura DoD e con la propria enorme diffusione ne ha fatto uno standard di fatto


2.45


Differenze rispetto a OSI

- L'architettura DoD si distingue dall'OSI specialmente perché
 - usa una strutturazione più flessibile
 - dà molto più rilievo all'internetworking
 - considera con più attenzione (dell'OSI) i servizi non orientati alla connessione

OSI	DoD	
Application Presentation Session	FTP, Telnet, SMTP, SNMP,	Process/ Application
Transport	TCP-UDP	Host-to-Host
Network	IP	Internet
Data Link Physical	Non Specificati	Network access

ATM

- ATM (*Asynchronous Transfer Mode*) è la tecnica di trasporto scelta (nel 1987 e caratterizzata nelle sue parti principali nel 1990) da ITU-T per le reti B-ISDN (*Broadband Integrated Services Digital Network*).
- Sebbene ATM sia uno standard ITU-T, esiste un grosso consorzio di aziende detto ATM-Forum, il cui scopo è accelerare il processo di standardizzazione di ATM.

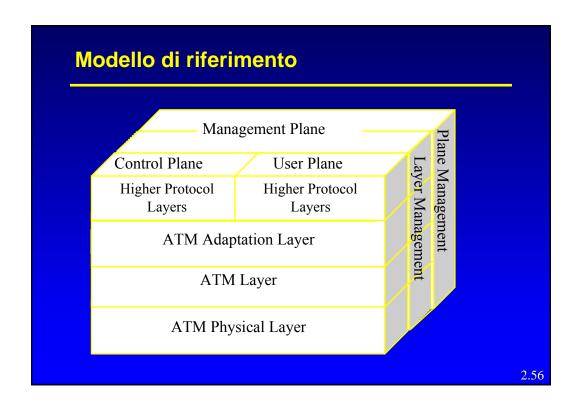
2.51

ATM

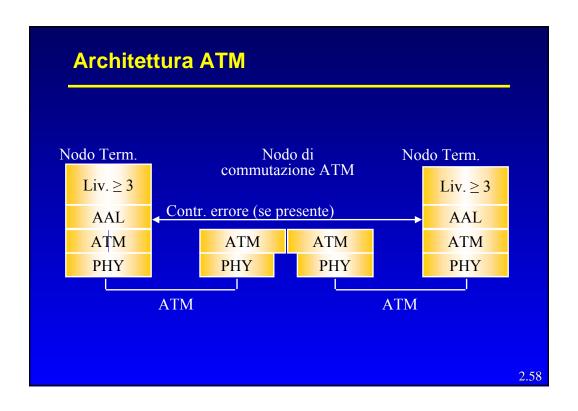
- Nasce con l'obiettivo di fornire supporto comune a tutti i tipi di servizi (attuali e futuribili) e quindi vuole essere:
 - Molto veloce (larga banda)
 - Efficiente
 - In grado di assicurare qualità di servizio

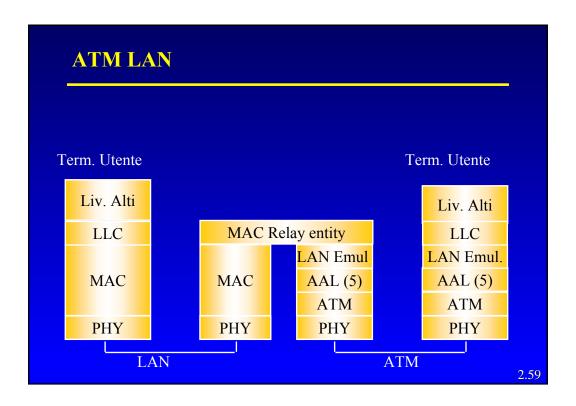
ATM

- Per questo utilizza un approccio di "core/edge" concentrando le operazioni sui bordi della rete e semplificando i nodi interni ed inoltre utilizzando:
 - Pacchetti (celle) piccole e di lunghezza costante
 - Servizi orientati alla connessione.


2.53

ATM


- Si compone di due parti principali
 - Una tecnica di commutazione: Fast packet switching
 - Una architettura protocollare con i relativi protocolli
- Può essere usata sia in ambito LAN che MAN e WAN.


ATM e TCP/IP

- A differenza del TCP/IP si propone come tecnica di trasporto e quindi copre i livelli bassi delle architetture funzionali.
- Teoricamente quindi TCP/IP e ATM potrebbero essere complementari, in realtà le grosse differenze che esistono fra i due approcci rendono complessa la loro interazione.

Sottolivelli ATM		
Convergence Sublayer	CS AT	
Segmentation and Reassembly	SAR Lav	
Cell header generation / extraction, Cell VPI / VCI translation, Cell MUX / DEMUX	ATM Layer	
Cell Rate Decoupling, HEC Generation/Verification, Cell Delineation, Transmission Frame Generation	Transmission Convergence	Physical Layer
Bit Timing Bit TX/RX	Physical Medium Dependent	cal er

