# IP versione 6

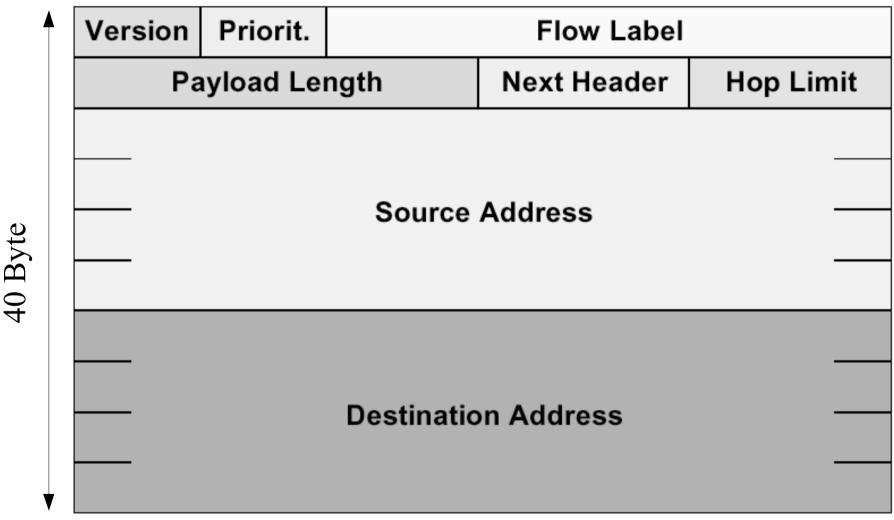
Passaggio IP v4 a IP v6

#### IPv6

- L'uso del CIDR ha solo temporaneamente risolto (attenuato) i problemi legati allo spazio di indirizzamento ed alle tabelle di *routing*.
- Per cui già nel 1990 è iniziata la fase di standardizzazione di una nuova versione di IP, che dovesse avere i seguenti requisiti
  - Supportare miliardi di utenti (anche presupponendo un inefficiente uso dello spazio di indirizzamento).
  - Ridurre, o comunque mantenere piccole le RT
  - Semplificare il protocollo
  - Migliorare la sicurezza (sia autenticazione, sia protezione del dato)

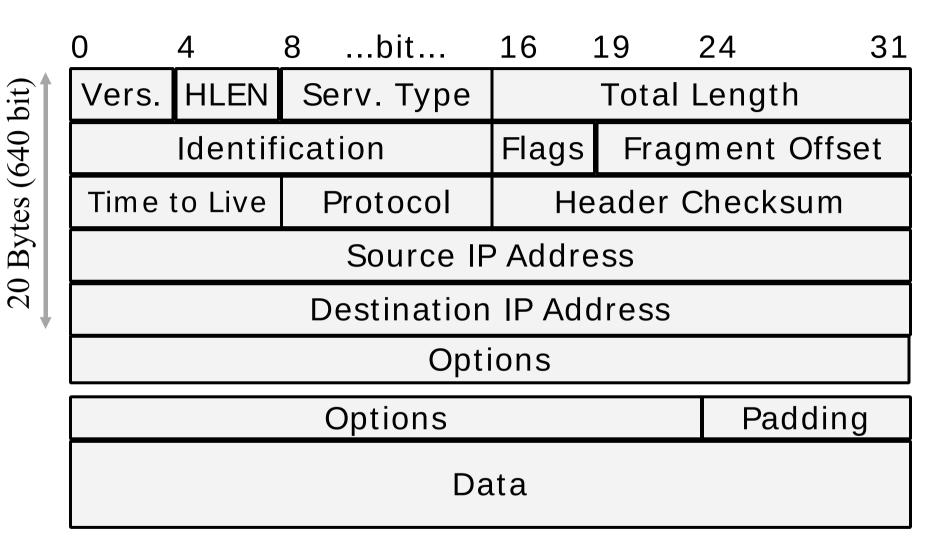
#### IPv6

- Dare supporto a tipi di servizi diversi
- Agevolare il multicast
- Permettere lo spostamento dell'host mantenendo lo stesso indirizzo
- Semplificare evoluzioni future
- Permettere la co-esistenza con IPv4 per lungo tempo.
- La scelta fatta fra diverse proposte è stata Simple Internet Protocol Plus (SIPP)


ovvero

• IPv6

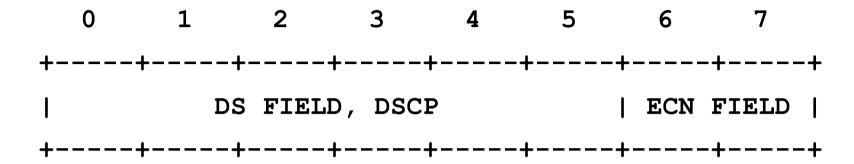
#### IPv6


- Gli elementi distintivi principali del nuovo standard sono
  - Non richiede sostanziali modifiche allo standard precedente
  - Gli indirizzi sono significativamente più lunghi
  - L'header è più semplice (7 campi invece di 14)
  - Le opzioni sono gestite meglio (anche per permettere una più veloce commutazione dei pacchetti).
  - Maggiore sicurezza
  - Supporto per servizi di tipo diverso.

### IPv6: Header



Il Campo Priority ha cambiato nome in Traffic Class ed ha dimensione 8 bit


## Il pacchetto IPv4



### IPv6: Header

- <u>Versione</u> (4 bit): il valore è 6, anche se in fase di transizione è stato suggerito (per velocizzare) di inserire l'informazione nel livello 2 come si trattasse di due protocolli diversi;
- Traffic Class (8 bit) (*Priority*): la sorgente dichiara tramite questo campo il trattamento che il pacchetto deve subire. Si distingue inizialmente fra:
  - Congestion Controlled Traffic (CCT): ossia il traffico su cui viene effettuato un controllo di congestione ed un recupero dell'errore (tutto il traffico dati in genere).
  - Non- CCT: i traffici che generano flussi di dati per lo più continui che necessitano di un ritardo ridotto (voce – video).

#### Traffic Class



DSCP: differentiated services codepoint

ECN: Explicit Congestion Notification

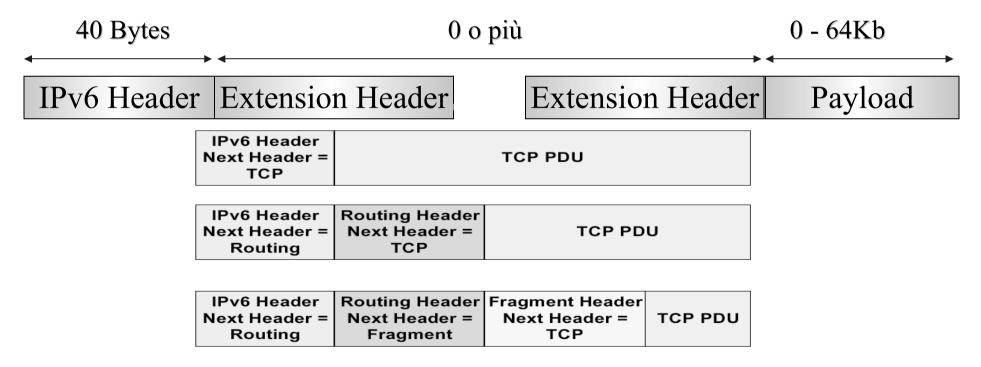
The Differentiated Services and ECN Fields in IP.

RFC 3168

# IPv6: Header - Priority

|   | CCT                                          |    | Non CCT                                               |
|---|----------------------------------------------|----|-------------------------------------------------------|
| 0 | Non specificato Default                      | 8  | ammesse perdite più elevate<br>(es. video alta qual.) |
| 1 | Di riempimento (es. news)                    | 9  |                                                       |
| 2 | Batch (es. email)                            | 10 |                                                       |
| 3 | Riservato                                    | 11 |                                                       |
| 4 | Interattivo a bassa priorità (es. ftp, http) | 12 |                                                       |
| 5 | Riservato                                    | 13 |                                                       |
| 6 | Interattivo ad alta priorità (es. Telnet, X) | 14 |                                                       |
| 7 | Di controllo (es. OSPF, SNMP)                | 15 | ammesse perdite meno elevate (es. audio telefonico)   |

#### IPv6: Header - Flow Label


- Questo campo individua dei flussi, ossia sequenze di pacchetti emessi dalla stessa sorgente per lo stesso servizio.
- Questa informazione dovrebbe permettere ai *router* di negoziare un trattamento particolare per alcuni flussi di dati.
- Le regole con cui trattare il campo sono:
  - Gli host/router che non gestiscono flussi devono lasciare il campo invariato nel forwarding, o metterlo a zero se sono origine del pacchetto.
  - Tutti i pacchetti generati dalla stessa sorgente con lo stesso numero di flusso (diverso da zero) devono avere gli stessi indirizzi di destinazione, sorgente e Hop by Hop Option Header (se presente) e Routing Header (se presente).
  - Gli ID di un flusso vanno scelti casualmente, con distribuzione uniforme da 1 a 2<sup>20</sup>-1 (per rendere efficienti le tabelle di *hash*), con la restrizione che una sorgente non possa riutilizzare numeri che sta già usando per altri flussi attivi.

#### IPv6: Header

- *Payload Length* (16 bits): lunghezza della parte dati del datagram in ottetti (a differenza dell'IPv4 non comprende l'intestazione) (comprende gli Extension Header). La parte fissa dell'header è lunga 40 ottetti (contro i 20 dell'IPv4).
- Next Header (8 bits)
- *Hop Limits* (8 bits): Viene decrementato di 1 ogni nodo attraversato (non si tiene più conto del tempo di attesa).
- Indirizzo di sorgente e di destinazione (128 bits + 128 bits).

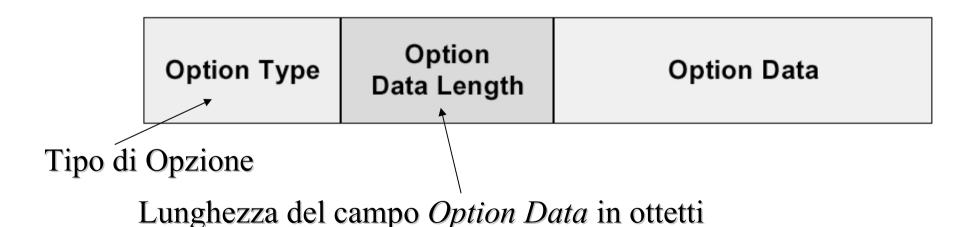
#### Header - Next Header

Il campo *Next header* identifica il successivo *header* che può essere un altro protocollo trasportato (e quindi essere contenuto nel *payload* e da elaborare solo alla destinazione) oppure degli *header* aggiuntivi (*Extension Header*) di IPv6. Gli *header* aggiuntivi contengono a loro volta il campo *next header* che permette di creare una catena di *ExHeader*.



### IPv6: Header - Next Header

- 0 HBH Hop by Hop option (IPv6)
  - 1 ICMP Internet Control Message (IPv4)
  - 2 IGMP Internet Group Management (IPv4)
  - 3 GGP Gateway-to-Gateway
  - 4 IP IP in IP (IPv4 encapsulation)
  - 6 TCP Transmission Control
  - 17 UDP User Datagram
  - 29 TP4 ISO Transport class 4
- 43 RH Routing Header (IPv6)
- 44 FH Fragment Header
  - 45 IDRP Interdomain Routing
- 50 ESP Encrypted Security Payload
- 51 AH Authentication Header
- 58 ICMP Internet Control Message (IPv6)
- 59 Null No next header (IPv6)

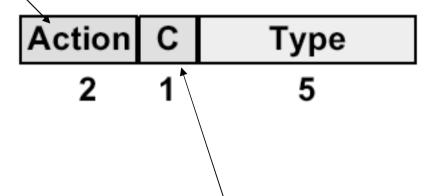

- **60 DOH Destination Option Header** 
  - 80 ISO-IP ISO 8473 CLNP
  - 88 IGRP Interior Gateway Routing
  - 89 OSPF Open Shortest Path First (IPv6)

Gli *ExHeader* di IPv6 vanno inseriti (uno solo per tipo) ed elaborati nel seguente ordine:

- •Hop-by-Hop Header
- •Routing Header
- •Fragment Header
- •Authentication Header
- •Encapsulating Security Payload Header
- \*Destination Options Header

## IPv6: Header - Hop-by-Hop Header

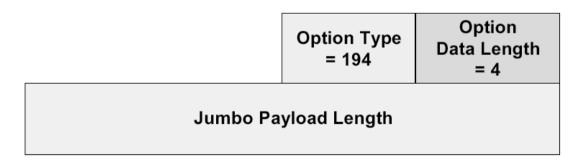
- Trasporta informazioni che devono essere elaborate in ogni nodo di transito. I campi di cui è composto sono:
  - Next Header (8 bit)
  - Header Extension Length (8 bit): in numero di blocchi da 64 bit esclusi i primi 64.
  - Opzioni: ogni opzione è codificata con tre campi:



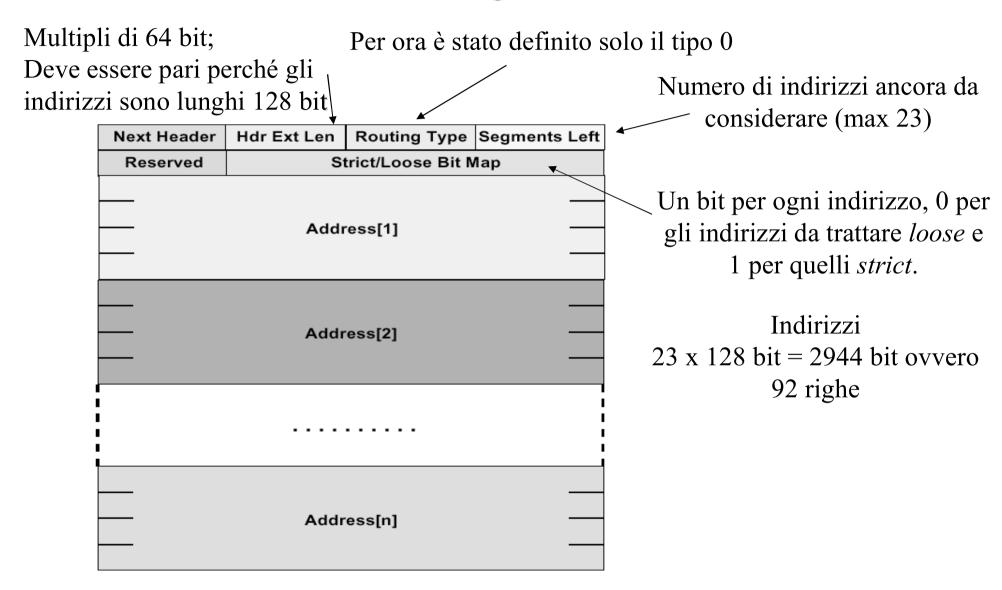

## IPv6: Header - Hop-by-Hop Header

Specifica cosa fare se non si riconosce l'opzione:

- on si ignora quella sconosciuta e si continua a elaborare la successiva
- on si scarta il pacchetto
- si scarta il pacchetto e si notifica al mittente tramite ICMP anche con destinazione multicast
- si scarta il pacchetto e si notifica al mittente tramite ICMP solo con destinazione unicast


Option Type




Specifica se l'opzione può (1) o non può (0) essere modificata lungo il percorso

## IPv6: Header - Hop-by-Hop Header

- Attualmente sono state definite solo 3 opzioni:
  - Pad1 (Option Type = 0) non ha i campi lunghezza e dati e rappresenta solo un riempimento di un byte.
  - PadN (Option Type = 1), ha tutti campi, e serve per realizzare riempimenti da 2 a N bytes.
  - Jumbo Payload: il campo JPL indica la lunghezza del datagram in ottetti, escluso l'header IP ma compreso HbHH. La lunghezza deve essere più di 64Kb, e deve avere un allineamento di 4n+2.



## IPv6: Header - Routing Header



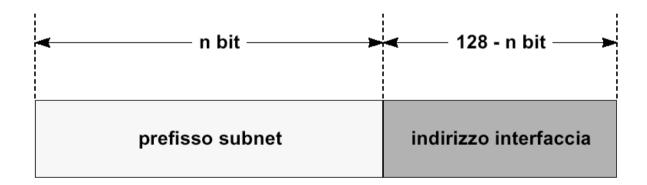
## IPv6: Header - Routing Header

- Permette di realizzare un Source Routing
- L'indirizzo inserito nel campo di destinazione del *Header* IPv6 non è la destinazione finale ma la successiva da raggiungere nell'elenco, così che ogni nodo intermedio non debba elaborare il campo opzionale.
- Si osservi che IPv6 richiede che le risposte ai pacchetti contenenti un RH debbano utilizzare lo stesso percorso all'indietro. Questo fornisce un potente mezzo per stabilire vincoli di instradamento a priori.

## IPv6: Header - Fragment Header

- Il processo di frammentazione è diverso in IPv6 rispetto ad IPv4. In IPv6 solo la sorgente può frammentare il *datagram*, l'eventuale frammentazione dipende dalla *Maximum Transfer Unit* (MTU) che la sorgente dovrebbe poter verificare sul percorso verso la destinazione. Altrimenti dovrebbe ipotizzare la MTU più piccola di 576 ottetti.
- Il *datagram* è diviso in una parte non frammentabile (composta dall'*header* originale e da ExHeader HbHH e RH che vanno duplicati in ogni frammento) e una frammentabile che contiene il resto.
- Nell'header si trovano i campi: *Fragment offset* (13 bit) in numero di 64 bit, **MFlag** (1 ci sono ancora seg., 0 se è l'ultimo), *Identification* (32 bits): deve essere unico per una coppia di indirizzi sorgente-destinazione.

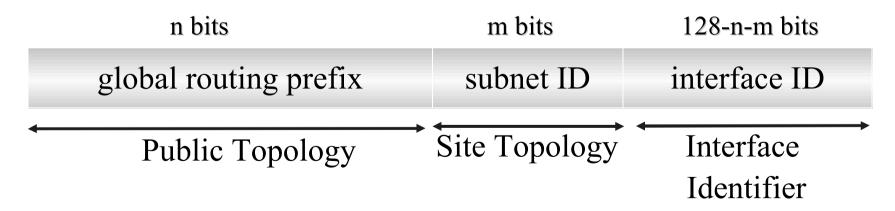
### IPv6: Header


- Se si confronta l'*header* IPv4 e IPv6 si notano alcune differenze sostanziali (a prescindere dagli indirizzi):
  - Il campo HL non c'è più perché in IPv6 la lunghezza dell'header è fissa
  - Il campo Protocol è sostituito da NextHeader
  - Tutti i campi legati alla frammentazione non ci sono più.
  - Il campo *checksum* è stato eliminato per velocizzare il trattamento del pacchetto.

- 128 bit
  - 2<sup>128</sup> indirizzi
  - circa 10<sup>38</sup> indirizzi
  - Più precisamente
    - » 340.282.366.920.938.463.463.374.607.431.768.211.456 indirizzi
- Alcune stime:
  - superficie della terra 511.263.971.197.990 mq
  - 655.570.793.348.866.943.898.599 indirizzi IPv6 per mq

- Tre tipi di indirizzo:
  - Unicast
    - » indirizzi verso singole stazioni
  - Anycast
    - » Identifica un insieme di interfacce, ma un pacchetto con questo indirizzo deve raggiungerne una sola, ma una qualsiasi, in genere la più "vicina" (usato per servizi)
  - Multicast
    - » indirizzi di gruppi di stazioni
- Non viene più utilizzato il *Broadcast*
- Gli indirizzi sono associati alle interfacce
- Possibilità di avere più indirizzi per ogni interfaccia

- Si scrivono in esadecimale come 8 gruppi di 4 cifre separati da "."
  - FEDC:BA98:0876:45FA:0562:CDAF:3DAF:BB01
  - 1080:0000:0000:0007:0200:A00C:3423
- Esistono delle semplificazioni:
  - si possono omettere gli zero iniziali 1080:0:0:7:200:A00C:3423
  - Si possono sostituire gruppi di zero con "::"
  - 1080::7:200:A00C:3423
- Gli indirizzi di compatibilità IPv4 si scrivono:
  - 0:0:0:0:0:0:A00:1
  - ::A00:1
  - :: 10.0.0.1


- Scompare il concetto di *Netmask*
- Viene sostituito da quello di "Prefix"
- Il *prefix* si indica aggiungendo ad un indirizzo "/N", dove N è la lunghezza in bit del *prefix*
- Esempio:
  - FEDC:0123:8700::/36 indica il prefisso
  - -11111111011011100000000001001000111000



| Allocation                            | <u>Prefix</u> | Fraction of Address Space               |
|---------------------------------------|---------------|-----------------------------------------|
| Reserved                              | 0000 0000     | 1/256                                   |
| Unassigned                            | 0000 0001     | 1/256                                   |
| Reserved for NSAP Allocation          | 0000 001      | 1/128 (RFC 1888, eliminata da RFC 4048) |
| Reserved for IPX Allocation           | 0000 010      | 1/128                                   |
| Unassigned                            | 0000 011      | 1/128                                   |
| Unassigned                            | 0000 1        | 1/32                                    |
| Unassigned                            | 0001          | 1/16                                    |
| Aggregatable Global Unicast Addresses | 001           | 1/8 (RFC 3587)                          |
| Unassigned                            | 010           | 1/8                                     |
| Unassigned                            | 011           | 1/8                                     |
| Unassigned                            | 100           | 1/8                                     |
| Unassigned                            | 101           | 1/8                                     |
| Unassigned                            | 110           | 1/8                                     |
| Unassigned                            | 1110          | 1/16                                    |
| Unassigned                            | 1111 0        | 1/32                                    |
| Unassigned                            | 1111 10       | 1/64                                    |
| Unassigned                            | 1111 110      | 1/128                                   |
| Unassigned                            | 1111 1110 0   | 1/512                                   |
| Link-Local Unicast Addresses          | 1111 1110 10  | 1/1024                                  |
| Site-Local Unicast Addresses          | 1111 1110 11  | 1/1024 (Disapprovata RFC 3879, 4291)    |
| Multicast Addresses                   | 1111 1111     | 1/256                                   |

#### Global Unicast Addresses – Formato Generale

- **global routing prefix**: è un valore assegnato ad un singolo sito inteso come insieme di sottoreti e link (di solito strutturato gerarchicamente).
- **subnet ID**: identificativo di sottorete all'interno del sito; permette di organizzare in modo gerarchico il proprio sito.
- **interface ID**: identificativo della singola interfaccia all'interno della sottorete.



#### Indirizzi unicast: Aggregatable Global Unicast Addresses

• FP Format Prefix (001)

• TLA-ID Top-Level Aggregation Identifier

• RES Reserved (per usi futuri)

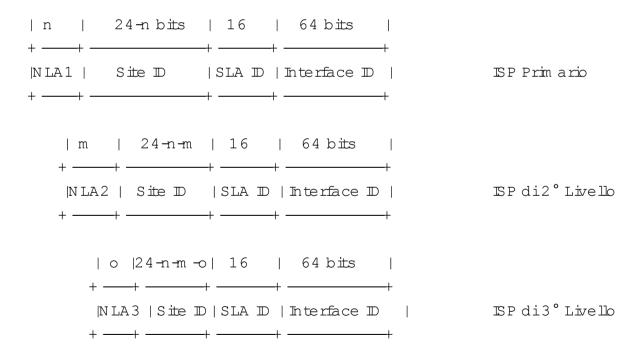
• NLA-ID Next-Level Aggregation Identifier

• SL- ID Site-Level Aggregation Identifier

• INTERFACE-ID Interface Identifier



### Indirizzi unicast : AGUA - TLA-ID


- Il *Top-Level Aggregation Identifier* identifica gli ISP principali che forniscono il servizio di connettività della rete.
- I *router* che operano a questo livello della gerarchia devono avere una riga per ogni TLA nella RT.
- 13 bit permettono 8.192 (2<sup>13</sup>) diversi ISP. Attualmente ci sono *router* che operano con tabelle con più di 50.000 elementi, ma l'IETF ha deciso di ridurre la dimensione delle RT dei *router* all'apice della gerarchia.
- E' previsto l'eventuale allargamento di questa parte dell'indirizzo sia tramite i *Reserved* bit sia allocando un altro FP.

### Indirizzi unicast: AGUA - RES

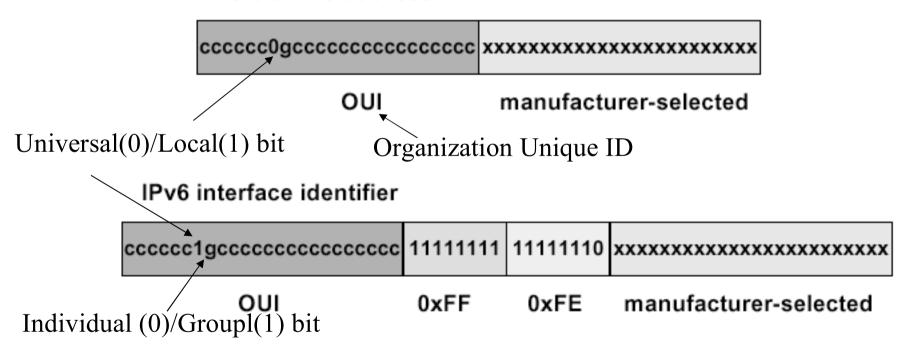
- I Reserved bit devono essere posti a 0.
- Sono pensati per permettere, in relazione ai bisogni che dovessero presentarsi, sia l'eventuale espansione (a destra) del campo TLA-ID sia di quello NLA-ID (a sinistra).

#### Indirizzi unicast: AGUA - NLA-ID

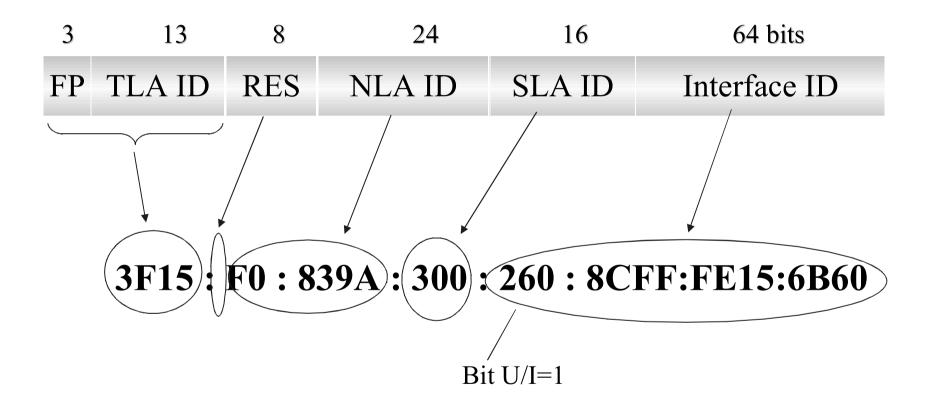
• Il *Next-Level Aggregation Identifier* è usato dall'ISP per organizzare la propria rete interna e può eventualmente essere a sua volta strutturato in modo gerarchico e sue parti assegnate ad ISP secondari.



### Indirizzi unicast: AGUA - SL-ID

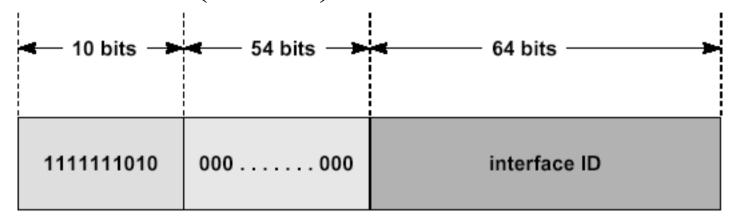

- Il *Site-Level Aggregation Identifier* viene assegnato dall'utente (identificato da un NLA -ID) che può mantenere una gestione dei propri indirizzi di tipo "piatto" (flat), oppure a sua volta gestire delle gerarchie per ridurre le proprie tabelle di routing.
- Lo spazio di indirizzamento è grande (come una classe B IPv4), l'organizzazione che avesse necessità ancora superiori può chiedere ulteriori siti (NLA ID).

| n   16-n            | 64 bits      |
|---------------------|--------------|
| SLA1   Subnet       | Interface ID |
| m  16-n-m           | 64 bits      |
| SLA2 Subnet         | •            |
| 1 = = = 1 = = = = 1 | ,,           |


### IPv6- Indirizzi unicast: AGUA - Interface-ID

• L'Interface ID viene ricavato usando gli indirizzi di livello 2. Per esempio nel caso di indirizzo MAC:

48 bit MAC address

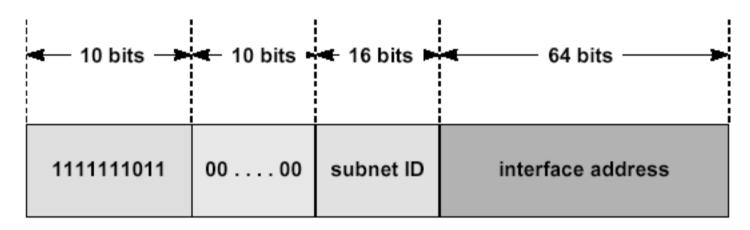



### IPv6- Indirizzi unicast: AGUA



### Indirizzi unicast: Link Local

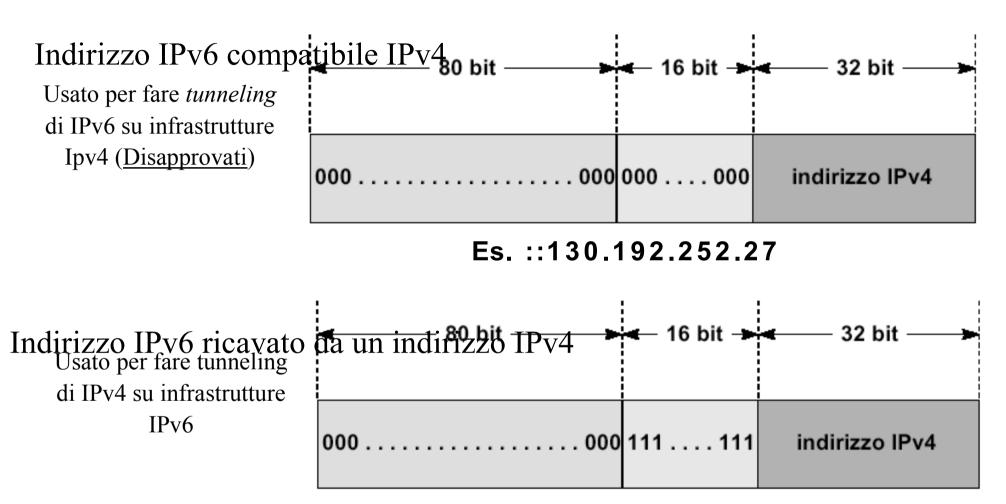
• Indirizzi "privati" (non annunciati dai router) pensati per piccole reti, autoconfiguranti, prive di router (interni).




FE80::A00:2FF:FE12:3456

|    |    |   |   |   |   |   |   |  |    |       |     | l      | ı | I |
|----|----|---|---|---|---|---|---|--|----|-------|-----|--------|---|---|
| FE | 80 | 0 | 0 | 0 | 0 | 0 | 0 |  | ir | nterf | ace | ID<br> | ı |   |

### Indirizzi unicast: Site Local


• Gli indirizzi *Site Local* sono privati (non annunciati) e permettono la realizzazione di reti interne strutturate (Disapprovati RFC 4291)



FEC0::11:200:CFF:FE12:3456

| FE | CO | 0 | 0 | 0 | 0 | subnet | interface ID |
|----|----|---|---|---|---|--------|--------------|
|    |    |   |   |   |   |        |              |

## Indirizzi: Reserved



Es. ::FFFF:130.192.252.27

### Indirizzi unicast: Reserved

- Indirizzi riservati particolari sono:
  - -:: (significa nessun indirizzo)
  - ::1 (*loopback*)

## IPv6- Indirizzi: Anycast

- è globale, ma viene assegnato a più interfacce
- I pacchetti vengono inviati verso l'interfaccia più vicina con tale indirizzo:
  - tipicamente identifica il server più vicino al mittente che fornisce un dato servizio.
- Gli indirizzi Anycast sono definiti all'interno dei global unicast
  - sono sintatticamente indistinguibili
  - il nodo a cui deve essere esplicitamente configurato
- Ad ogni indirizzo anycast viene associato un prefisso P che identifica la regione dove risiedono tutte le interfacce associate
  - interno alla regione: elemento separato nella Routing Table
  - esterno alla regione: elemento aggregato per P nella Routing Table


## IPv6- Indirizzi: Anycast

- Per il momento sono state definite alcune regole:
  - Non può essere usato come indirizzo di sorgente
  - Non può essere assegnato a host ma solo a router
- Per ora ne è stato definito solo uno:

| n bit         | 128 - n bit |
|---------------|-------------|
| subnet prefix | 0000000     |

• Che individua il *router* più vicino in una *subnet* 

11111111 0111 Scope Res. RRID plen prefix.



32 bits

Group ID

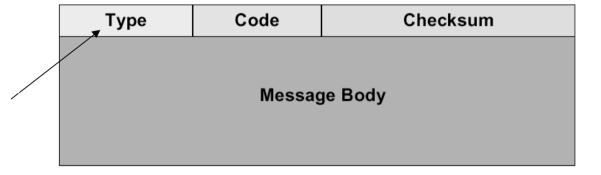
F reserved

- **interface-local scope**: propaga il multicast solo su una interfaccia di un nodo ed è utile solo per trasmissioni loopback del multicast.
- **link-local e site-local scope**: propagano il multicast nelle stesse regioni dei corrispondenti indirizzi unicast.
- admin-local scope: è il più piccolo dominio di diffusione che può essere configurato amministrativamente (non derivabile automaticamente da connettività fisica o altre configurazioni indipendenti dal multicast).
- **organization-local scope**: la diffusione del multicast avviene su più siti appartenenti alla stessa organizzazione.
- **(unassigned)**: disponibili per la definizione di ulteriori regioni di multicast.

- Esempio dello scope: Network Time Protocol (NTP)
  - FF01::43 indica tutti i server NTP presenti sullo stesso nodo del mittente;
  - FF02::43 indica tutti i server NTP presenti sullo stesso link del mittente;
  - FF05::43 indica tutti i server NTP presenti sullo stesso sito del mittente;
  - FF0E::43 indica tutti i server NTP presenti sulla rete.
- Gli indirizzi non permanenti hanno significato solo entro un dato scope.
- Gli indirizzi multicast non possono essere usati come indirizzo sorgente
- I nodi non devono generare pacchetto il cui scope sia 0 o F

- Alcuni degli indirizzi permanenti sono:
  - FF01:0000:0000:0000:0000:0000:0001 -- Tutti i nodi su un'interfaccia
  - FF02:0000:0000:0000:0000:0000:0001 -- Tutti i nodi su un link
  - FF01:0000:0000:0000:0000:0000:0000 -- Tutti i router su un'interfaccia
  - FF02:0000:0000:0000:0000:0000:0000 -- Tutti i router su un link
  - FF05:0000:0000:0000:0000:0000:0000 -- Tutti i router su un sito
  - Tutti i server DHCP su un link
    - » FF02:0000:0000:0000:0000:0000:0000
  - Solicited Node Multicast Address (usato dal protocollo di Neighbor Discovery): -- FF02:0000:0000:0000:00001:FFxx:yyyy
  - dove xx:yyyy sono i 24 bit meno significativi di un indirizzo IPv6 unicast o anycast

# Ipv6: Indirizzi


- Quali indirizzi deve saper riconoscere un *host* come identificatori di se stesso?
  - Il suo indirizzo *Link Local* per ogni interfaccia
  - Gli indirizzi *unicast* assegnati alle interfacce
  - L'indirizzo di loopback
  - Il multicast address permanente che identifica tutti i nodi
  - I multicast address di Neighbor Discovery associati a tutti gli indirizzi unicast e anycast assegnati alle interfacce
  - I multicast address dei gruppi cui il nodo appartiene

## Ipv6: Indirizzi

- Quali indirizzi deve saper riconoscere un *router* come identificatori di se stesso?
  - Il suo indirizzo *Link Local* per ogni interfaccia
  - Gli indirizzi unicast assegnati alle interfacce
  - L'indirizzo di loopback
  - Il Subnet Router anycast address per tutti i link su cui ha interfacce
  - Gli altri indirizzi anycast assegnati alle interfacce
  - Il *multicast address* permanente di tutti i nodi
  - Il *multicast address* permanente di tutti i *router*
  - I multicast address di Neighbor Discovery associati a tutti gli indirizzi unicast e anycast
  - I multicast address dei gruppi cui il nodo appartiene

- L' Internet Control Message Protocol v6 (ICMPv6) ha tre impieghi principali
  - Diagnostica
  - Neighbor Discovery
  - Gestione dei gruppi multicast
- Riunisce al suo interno le funzionalità che in IPv4 erano suddivise tra:
  - ICMP
  - ARP (Address Resolution Protocol)
  - IGMP (Internet Group Membership Protocol)

- Il messaggio ICMPv6 è trasportato in un pacchetto IPv6 ed è indicato dal valore 58 nel campo *Next Header* 
  - 1 Destination Unreachable
  - 2 Packet too big
  - 3 Time exceeded
  - 4 Parameter Problem
  - 128 Echo Request
  - 129 Echo Reply
  - 130 Group Membership Query
  - 131 Group Membership Report
  - 132 Group Membership Termination
  - 133 Router Solicitation
  - 134 Router Advertisement
  - 135 Neighbor Solicitation
  - 136 Neighbor Advertisement
  - 137 Redirect



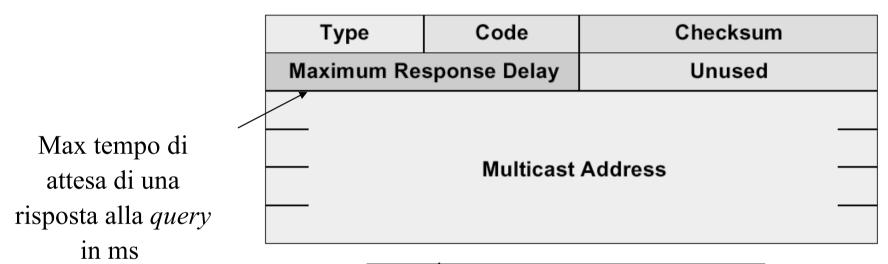
# Destinazione non raggiungibile

| Туре                                                | Code | Checksum |  |  |
|-----------------------------------------------------|------|----------|--|--|
| Unused                                              |      |          |  |  |
| La prima parte del pacchetto che ha                 |      |          |  |  |
| causato la trasmissione del messaggio ICMPv6        |      |          |  |  |
| (il pacchetto ICMPv6 non deve eccedere 576 ottetti) |      |          |  |  |

| Code | Significato                                      |
|------|--------------------------------------------------|
| 0    | No route to destination                          |
| 1    | Communication with destination admin. Prohibited |
| 2    | Not a neighbor                                   |
| 3    | Address unreachable                              |
| 4    | Port unreachable                                 |

## Pacchetto troppo grande

(ossia ha ecceduto la MTU in un qualche tratto del percorso)


| Туре                                         | Code | Checksum |  |  |
|----------------------------------------------|------|----------|--|--|
| MTU                                          |      |          |  |  |
| La prima parte del pacchetto che ha          |      |          |  |  |
| causato la trasmissione del messaggio ICMPv6 |      |          |  |  |

(il pacchetto ICMPv6 non deve eccedere 576 ottetti)

- La precedente segnalazione di ICMPv6 viene usata dal Path MTU Discovery, che è un protocollo che permette la ricerca della dimensione ottimale del pacchetto per aumentare il Throughtput
- Assume inizialmente come Path MTU il valore dell'MTU del primo link
  - ICMP notifica Path MTU errate
  - Memorizza le informazioni sul Path MTU
  - Cancellazione delle informazioni obsolete

- Altre segnalazioni di errore sono fornite tramite:
  - Time exceeded: superato l'Hop Limit
  - Parameter Problem : problemi legati agli header
- Echo Request ed Echo Reply hanno sostanzialmente lo stesso uso di ICMP e sono messaggi di diagnostica

• *Group Membership*, in sostanza ingloba le funzionalità di IGMP in ICMPv6



| Туре | Significato                |
|------|----------------------------|
| 130  | Group Membership Query     |
| 131  | Group Membership Report    |
| 132  | Group Membership Reduction |

- In IPv6 ARP scompare sostituito dalle nuove funzionalità di ICMP:
  - Router e Prefix Discovery
  - Parameter Discovery
  - Address Autoconfiguration
  - Neighbor Unreachability Detection
  - Address Resolution
  - Next-Hop Determination
  - Duplicate Address Detection
  - Redirect

## **Router/Prefix Discovery**

- Router Advertisement generati dai router:
  - solicited: in risposta a Router Solicitation da host
  - unsolicited: periodici
- Trasportano
  - indirizzo *link-local* e parametri del router
  - prefissi
- Prefissi hanno 2 scopi:
  - Stateless Address Autoconfiguration
  - determinazione nodi on/off link

#### Address Resolution

- Una stazione che debba trasmettere un pacchetto verifica se l'indirizzo è locale (confronto con un *address prefix*) o remoto:
- Se è locale:
  - determina l'indirizzo tramite una Neighbor
    Solicitation
- Se è remoto:
  - sceglie un router tra quelli conosciuti tramite un Router Advertisement

#### Redirect

- Router generano pacchetto di Redirect per informare un host di un miglior first-hop
- Il *first-hop* è sempre *on-link*, indipendentemente dal prefisso
- Quindi, a differenza di ICMP, la *redirect* permette di far comunicare direttamente due *host* con prefissi diversi ma connessi alla stessa rete fisica.