Sicurezza in Internet

Crittografia

Sommario

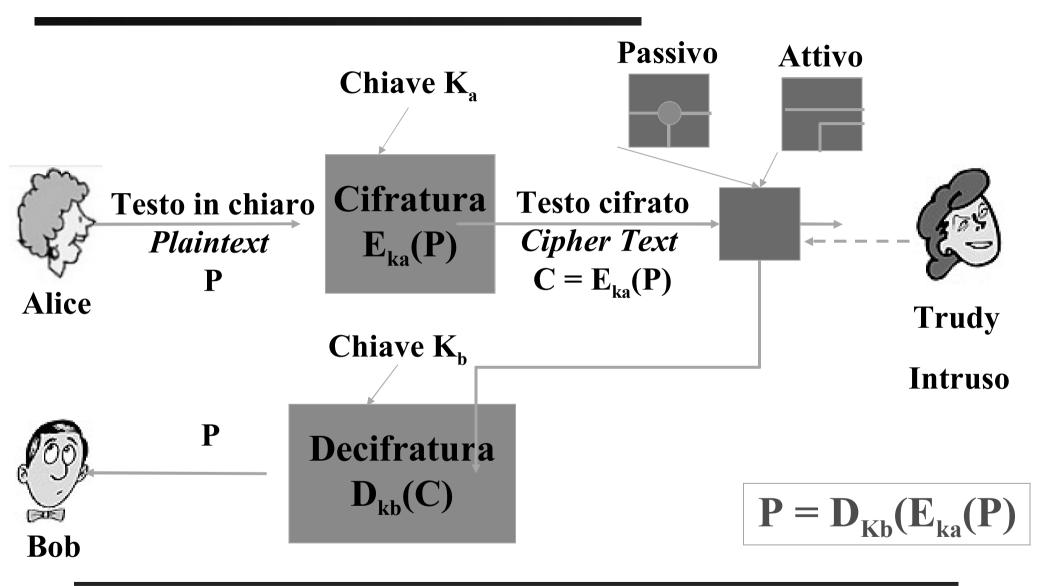
- Introduzione
- Cifratura a Chiave Simmetrica
- Cifratura a Chiave Pubblica
- Autenticazione
- Firma Elettronica
- Distribuzione delle Chiavi
- Protocolli

Sicurezza nelle reti

- Ci sono tre aree in cui bisogna intervenire per rendere una rete sicura
 - Riservatezza (Confidentiality): il messaggio deve essere accessibile (visualizzabile o rilevabile la sua presenza) sola ad entità autorizzate.
 - Autenticazione: L'identità delle entità coinvolte nella comunicazioni deve poter essere verificata.
 - Integrità (Integrity) (ed eventuale "firma"): impedire che i dati possano essere modificati se non da autorità autorizzate (con firma: anche legate all'autore, che non ne possa disconoscere la paternità).

Sicurezza nelle reti: Attacchi

Passivi


- Accesso al contenuto: venire a conoscenza di informazioni riservate.
 Ad esempio lo *Sniff* (il fiutare) di pacchetti su LAN a mezzo condiviso.
- Analisi del traffico: senza vedere i contenuti specifici, riconoscere l'entità dei comunicanti e tipo e frequenza dei messaggi.
- Sono difficili da rilevare, quindi si devono prevenire.

Sicurezza nelle reti: Attacchi

Attivi

- **Sostituzione**: Farsi passare per un altro Ad esempio lo *Spoofing* (imbroglio) IP.
- Replica: copiare e riproporre un messaggio per ottenere effetti non autorizzati (ad esempio, un doppio versamento).
- Alterazione: modifica anche solo dell'ordine
- Negazione del servizio: inibire l'uso o la gestione di un sistema (anche dell'intera rete), ad esempio per impedire la generazione o arrivo di messaggi di allarme (SYN *Attack*).
- Possono sia essere rilevati e quindi fermati che prevenuti

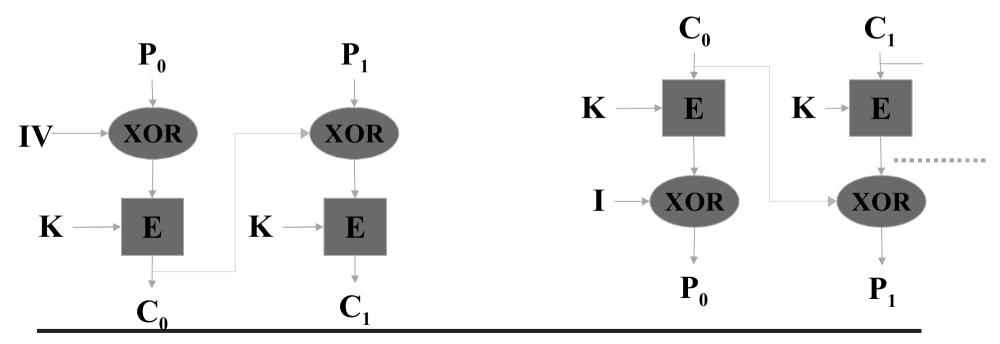
Riservatezza: Cifratura

- E' una tecnica antica (Giulio Cesare)
- $K_A = K_B = K$: una sola chiave
- Deve rispettare due requisiti per essere sicura:
 - Robustezza dell'algoritmo: anche conoscendo l'algoritmo ed avendo campioni di testo in chiaro e cifrato, l'intruso non deve essere in grado di decifrare il testo e scoprire la chiave
 - Mittente e destinatario devono poter ottenere in modo sicuro la chiave e custodirla efficacemente.

Ź

Attacchi al testo cifrato

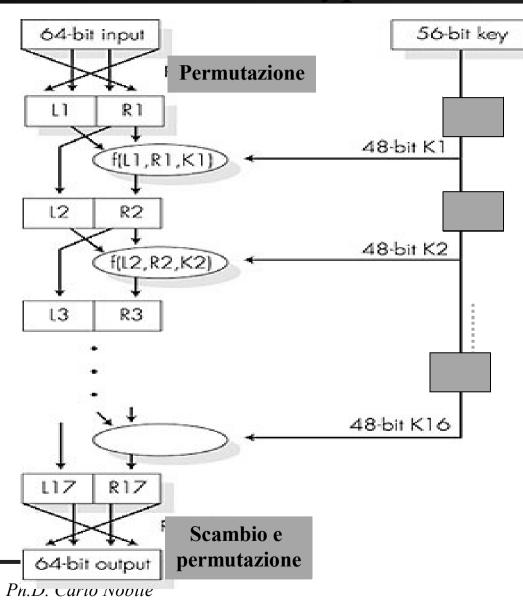
- Attacco al testo cifrato (chipertext only): chi attacca ha a disposizione solo la conoscenza di una certa quantità di testo cifrato.
- Attacco al testo in chiaro conosciuto (known plaintext): chi attacca conosce alcuni campioni di testo in chiaro e i corrispondenti messaggi cifrati.
- Attacco al testo in chiaro scelto (chosen plaintext): chi attacca ha la possibilità di criptare il testo in chiaro desiderato.


- Per scardinare un algoritmo di cifratura esistono due tecniche:
 - Criptoanalisi: che si basa sulla natura degli algoritmi, su campioni, su caratteristiche statistiche di P.
 - Forza bruta.

Dim. chiave	# di chiavi possibili	Tempo (1 cifr./µs)	Tempo (106 cifr./µs)
32	$2^{32} = 4,3x10^9$	231 s = 35,8 min.	2,15 ms
56	$2^{56} = 7,2 \times 10^{16}$	255 s = 1142 anni	10,01 ore
128	$2^{128} = 3,4x10^{38}$	$2127s = 5,4 \cdot 10^{24} \text{ anni}$	5,4 10 ¹⁸ anni
168	$2^{168} = 3,7 \times 10^{50}$	$2167 \text{ s} = 5.9 \cdot 10^{36} \text{ anni}$	5,9 10 ³⁰ anni

- Viene in genere realizzata con una sostituzione monoalfabetica:
 - Sostituisco una "lettera" (blocco di dati) con un'altra.
- Se le lettere sono quelle dell'alfabeto (blocchi di 7 o 8 bit) ho
 - 26! possibili accoppiamenti pari a circa 10²⁶
 - Facile usare meccanismi statistici per scardinare il codice

• Per rendere la tecnica più efficace


- si usano "lettere" più grandi (ad es. n = 64 bit) e slegate dal testo, ossia si sostituisce un blocco di bit di lunghezza fissa con un altro.
- Si concatena il risultato di una cifratura con la successiva, ossia si esegue il concatenamento di blocchi cifrati (*Cipher Block Chaining*, CBC)

Cifratura a chiave simmetrica <u>Data Encryption Standard</u> (DES)

- Nasce nel 1977 e viene aggiornato nel 1993,
- E' stato adottato dal U. S. National Bureau of Standard (oggi National Institute for Standard and Technology, NIST)
- L'algoritmo vero e proprio si chiama Data Encryption Algorithm (DEA):
 - Opera su blocchi da 64 bit.
 - Usa una chiave da 56 bit.
 - Si compone di 19 stadi:
 - » Una prima permutazione
 - » 16 stadi parametrizzati da una variante della chiave K_i, i=1,..,16
 - » Uno scambio dei 32 bit destri con i sinistri
 - » Una permutazione inversa alla prima

Cifratura a chiave simmetrica <u>Data Encryption Standard</u> (DES)

- •In genere viene usato in unione con un concatenamento (CBC).
- •La decifratura avviene con lo stesso meccanismo ma usando le chiavi in ordine inverso
- •La complessità dell algoritmo risiede nella funzione f(.).

Cifratura a chiave simmetrica <u>Data Encryption Standard</u> (DES)

- Per quanto concerne la robustezza, sono stati indetti tre concorsi (*challenger*) per violarlo:
 - Challenger I (1997): scardinato in 4 mesi;
 - Challenger II (1998): scardinato in 56 ore
 - *Challenger* II (1999): scardinato in 22 ore e 15 min. (testate 245x10⁹ chiavi al sec.)
- Ad oggi, (nella sua forma con chiave a 56 bit) non è considerato molto sicuro.

Ph.D. Carlo Nobile

Cifratura a chiave simmetrica *Triplo-DEA* (T-DEA)

- Standardizzato dall'ANSI (1985) come X 9.17 e parte del DES dal 1999
- Usa 3 chiavi da 56 bit: K₁, K₂, K₃.
- Opera come segue:

$$C = E_{K_3}(D_{K_2}(E_{K_1}(P)))$$

- Questo significa che ha una chiave di lunghezza complessiva pari a 168 bit
- Si può cifrare e decifrare il DEA ponendo tutte le chiavi uguali
- Si può usare una chiave da 112 bit ponendo $K_1 = K_3$

- Il National Institute of Standards and Technology (NITS), ente governativo americano, nel 1997 ha lanciato un concorso pubblico per individuare un nuovo standard di crittografia, per uso generico del governo americano
- il nome dello standard sarebbe stato AES (Advanced Encryption Standard);
- lo scopo del concorso pubblico era quello di evitare ogni possibile sospetto sul nuovo standard.

- I requisiti richiesti erano:
 - utilizzo di crittografia a chiave simmetrica;
 - progetto completamente pubblico;
 - chiavi di lunghezza 128, 192 e 256 bit;
 - implementazione hw e sw;
 - algoritmo doveva essere liberamente utilizzato o non avere restrizioni particolari.

AES - Rijndael

- L'algoritmo prescelto è stato il Rijndael (Rijmen e Daemen)
- la selezione si è basata su criteri di sicurezza, efficienza, semplicità, flessibilità e requisiti di memoria (per sistemi embedded).
- Supporto chiavi e blocchi di cifratura da 128 a 256 bit, a passi di 32 bit
- blocchi e chiavi possono avere diversa lunghezza.
- L'utilizzo più frequente prevede chiavi di 128 o 256 bit e blocchi di 128 bit.

- Collocazione dei dispositivi di cifratura, due possibilità:
 - Sulle linee (il pacchetto rimane vulnerabile nei commutatori)
 - Sui dispositivi terminali (non è possibile cifrare anche le intestazioni ma solo i dati)
- L'ottimo e utilizzare ambedue i metodi.

Cifratura a chiave pubblica

- Utilizza due chiavi:
 - Una chiave K_A usata per la cifratura che viene resa pubblica (chiave pubblica).
 - Una chiave $\mathbf{K}_{\mathbf{B}}$ usata per la decifratura che viene mantenuta segreta (chiave privata).
- Si evita (ma solo parzialmente!) il problema della distribuzione della chiave.
- Deve avere tre requisiti
 - $\mathbf{D}_{KB}(\mathbf{E}_{KA}(\mathbf{P})) = \mathbf{P}$
 - Non deve essere possibile dedurre \mathbf{K}_{B} da \mathbf{K}_{A} .
 - K_B non deve poter essere dedotta tramite cifratura di testi noti

Scelta delle chiavi

- Si scelga due numeri primi grandi (ad esempio da 1024 bit): p e
 q.
- Si calcoli $\mathbf{n} = \mathbf{p} \cdot \mathbf{q}$, $\mathbf{z} = (\mathbf{p} 1)(\mathbf{q} 1)$.
- Si scelga e (con e < n) tale che non abbia fattori comuni con z (e e z sono "primi relativi").
- Si scelga d tale che ed-1 sia esattamente divisibile per z (in altre parole $e \cdot d \mod z = 1$.
- La chiave pubblica $K_A = (n, e)$ e la chiave privata $K_B = (n, d)$.

- Dati (**n**, **e**) e (**n**, **d**):
 - Per cifrare una sequenza di bit m, si calcola:
 c = m^e mod n (ossia il resto di m^e diviso n)
 - Per decifrare una sequenza di bit c ricevuta, si calcola:

 $\mathbf{m} = \mathbf{c}^{\mathbf{d}} \mod \mathbf{n}$ (ossia il resto di $\mathbf{c}^{\mathbf{d}}$ diviso \mathbf{n})

• Ciò che accade è che

 $m = (m^e \mod n)^d \mod n$

Bob sceglie $\mathbf{p} = 5$, $\mathbf{q} = 7$.

Quindi n = 35, z = 24.

e = 5 (così e, z sono primi relativi).

 $\mathbf{d} = 29 \text{ (così ed-1 è divisibile esattamente per z)}.$

Cifra: Lettera
$$\underline{m}$$
 \underline{m}^e \underline{m}^e $\underline{c} = \underline{m}^e \underline{mod n}$ 17

Decifra: $\frac{c}{17}$ $\frac{c}{2}$

$$m = c^{d} \mod n$$
 Lettera

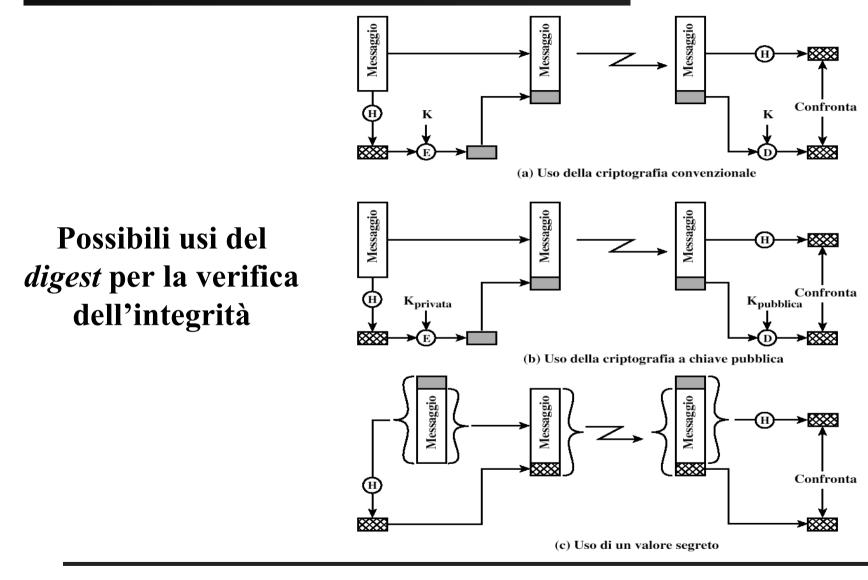
- Perché vale $m = (m^e \mod n)^d \mod n$?
- La base è un risultato della teoria dei numeri, ossia se p e q sono primi e n = p q allora:

```
 \begin{array}{ll} x \ mod \ n = x^{e \ mod \ (p-1)(q-1)} mod \ n \\ &= m^{ed \ mod \ n} = \\ &= m^{ed \ mod \ (p-1)(q-1)} \ mod \ n = \\ &= (\text{grazie al risultato della teoria dei numeri di cui sopra}) \\ &= m^1 \ mod \ n = \\ &= (\text{dato che si è scelto ed divisibile per (p-1)(q-1) con resto 1)} \\ &= m \end{array}
```

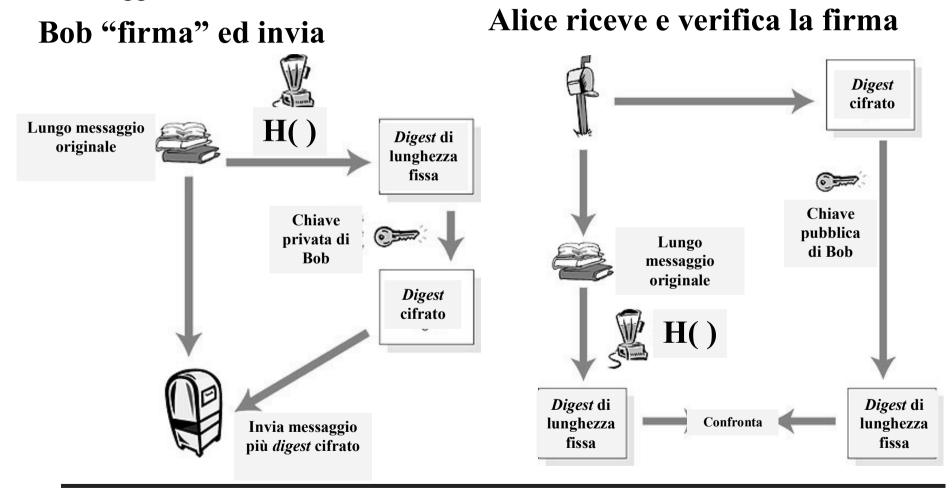
- Si osservi che l'algoritmo funziona anche a chiavi invertite.
- Il meccanismo è sicuro perché, al momento, non sono noti algoritmi veloci per la fattorizzazione dei numeri (altrimenti basterebbe fattorizzare n)
- Il problema della cifratura a chiave pubblica è il tempo di elaborazione, rispetto alla chiave simmetrica:
 - In software è 100 volte più lenta
 - In hardware è da 1000 a 10.000 volte più lenta
- Allora viene usato, in genere, solo per lo scambio di una chiave simmetrica di sessione.

Integrità e firma elettronica

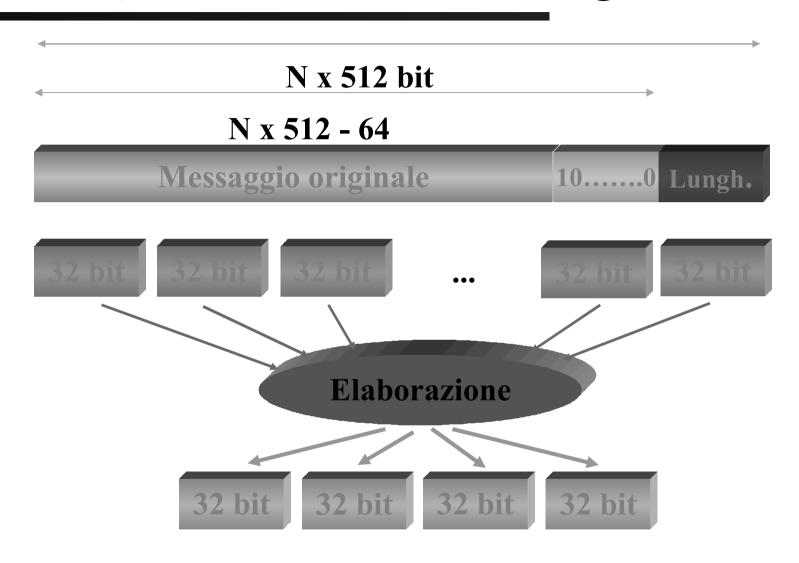
- La firma elettronica è la forma più completa di verifica di integrità. Tale tipo di firma dovrebbe far sì che:
 - L'integrità del messaggio originale sia assicurata.
 - La firma sia legata indissolubilmente al messaggio.
 - La firma sia verificabile (permette di identificare chi ha firmato).
 - La firma sia non falsificabile e non rifiutabile (solo quell'individuo deve poter fare quella firma e non deve poterla disconoscere).

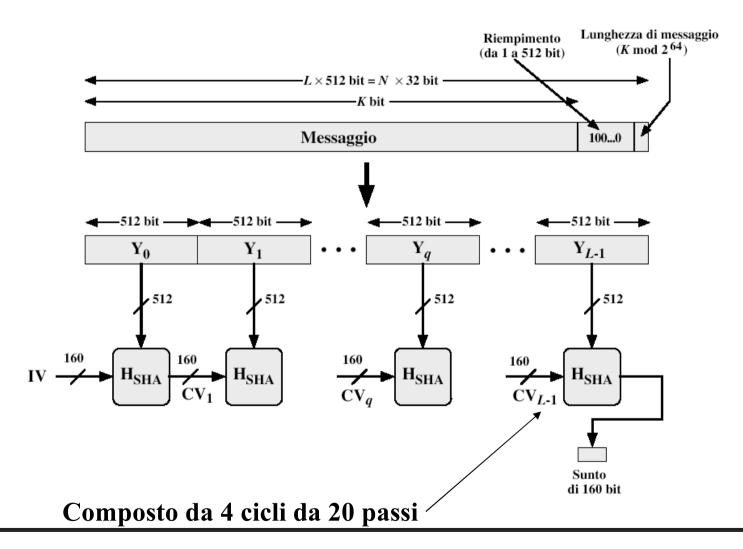

Firma elettronica

- Un modo per firmare il proprio documento è quello di codificarlo con la propria chiave privata.
- Dato che solo il proprietario ha la chiave privata, questo assicura che solo lui può averlo codificato, e chiunque può verificare che è stato lui a codificarlo usando la sua chiave pubblica e ritrovando il messaggio.
- Questo procedimento ha un limite:
 - La cifratura di un messaggio (con chiave pubblica) è una operazione onerosa se fatta su grandi quantità di dati. E lo stesso vale per la decifratura, obbligatoria per poter leggere il messaggio


Firma elettronica

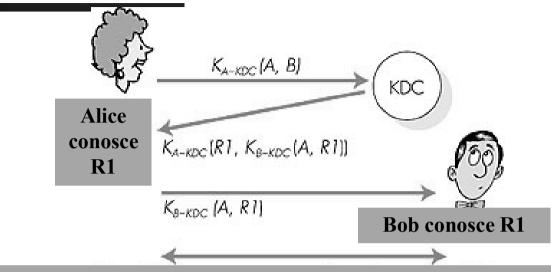
- Un meccanismo alternativo che impone un minor onere computazionale è quello del *message digest* (sunto del messaggio).
- Il principio è simile a quello dei codici a rivelazione d'errore, si applica ad un messaggio p una funzione H() il cui risultato è un blocco di dati d_p (il *digest*) con dimensioni molto minori di p. Tale *digest* deve essere legato in modo univoco la messaggio originale
- Tale funzione H() viene chiamata funzione di hash.


- La funzione di *hash* H() deve avere le seguenti proprietà:
 - Deve poter essere applicata a messaggi di qualunque dimensione.
 - Deve produrre un risultato di lunghezza fissa
 - Deve essere relativamente semplice da calcolare.
 - Per ogni *digest* d dato, deve essere computazionalmente impossibile trovare x tale che H(x) = d (non invertibilità).
 - Per ogni messaggio x deve essere computazionalmente impossibile trovare $y \neq x$ tale che H(y) = H(x) (impedisce falsificazioni).
 - Deve essere computazionalmente impossibile trovare una qualsiasi coppia (x, y) tale H(x) = H(y).



• Si può usare il *digest* cifrato con la chiave privata corrisponde a firmare il messaggio

- Gli standard più usati per il *digest* attualmente sono sostanzialmente due:
 - Secure Hash Algorithm (SHA): sviluppato dal NIST e rivisto successivamente e standardizzato come FIPS PUB 180-1 noto come SHA-1, e usa digest da 160 bit.
 - MD5 definito da Ron Rivest [RFC 1321] che usa un digest di 128 bit.

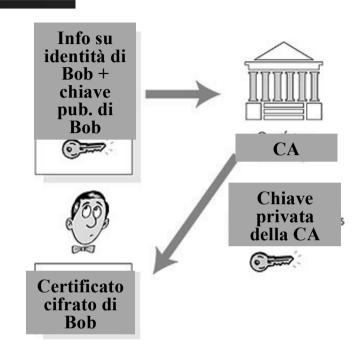


Distribuzione delle chiavi e certificazione

- Due entità che voglio comunicare cifrando con chiave simmetrica, come stabiliscono una chiave segreta comune?
- La soluzione è un centro di fiducia che distribuisca le chiavi (Key Distribution Center, KDC).
- Per la chiave pubblica-privata, il problema è un altro: come si fa ad essere sicuri della "proprietà" di una chiave pubblica?
- Anche in questo caso bisogna avere un intermediario di fiducia detto Autorità di certificazione (*Certification Authority*, CA) che certifichi l'appartenenza di una chiave pubblica.

Key Distibution Center

- Alice e Bob hanno bisogno di una chiave simmetrica comune.
- **KDC**: un server condivide una chiave segreta con ciascuno degli utenti registrati.
- Alice, Bob conoscono la propria chiave simmetrica, K_{A-KDC} K_{B-KDC}, per comunicare con il KDC.



Alice e Bob comunicano usando la chiave di sessione R1

- Alice comunica con il KDC, acquisisce la chiave di sessione R1, e $K_{B-KDC}(A,R1)$
- Alice invia a Bob
 K_{B-KDC}(A,R1) e Bob estrae R1
- Alice e Bob ora condividono la chiave simmetrica R1.

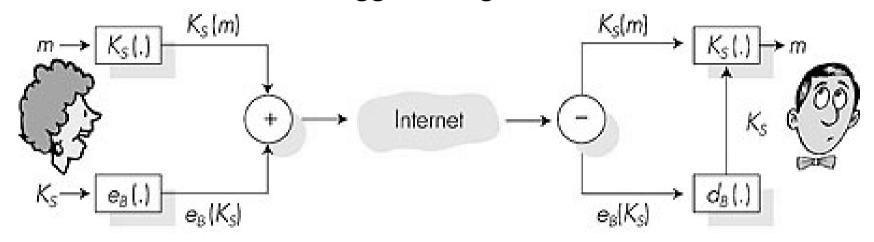
Certification Authority (CA)

- La *Certification Authority* (**CA**) lega una chiave pubblica ad una entità.
- Le entità (persone, router, etc.) possono registrare le loro chiavi pubblica alla CA.
 - L'entità che si iscrive deve fornire una "prova dell'identità" alla CA.
 - La CA crea un Certificato che lega
 l'entità alla chiave pubblica.
 - Il certificato viene "firmato" dalla CA.

Quando Alice vuole la chiave pubblica di Bob:

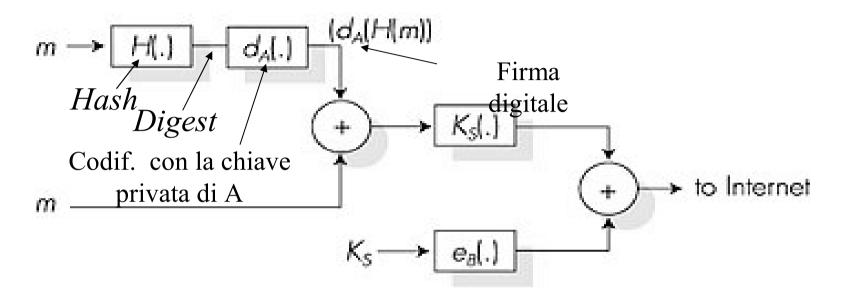
- Prende il certificato di Bob (da Bob, dalla CA o ovunque).
- Applica la chiave pubblica del CA e ricava la chiave pubblica di Bob.

Distribuzione delle chiavi e certificazione


- Si osservi che la pratica usuale è quella di:
 - Usare chiave simmetriche per la cifratura dei dati (più veloci).
 - Cambiare spesso (ogni sessione o più) la chiave simmetrica.
 - Scambiarsi la chiave simmetrica tramite una cifratura a chiave pubblica.
 - Autenticare l'identità della chiave pubblica usando una CA.

Sicurezza - Protocolli

- Oltre che dal punto di vista della locazione fisica dei meccanismi di sicurezza, riveste una notevole importanza la scelta del loro posizionamento nella pila protocollare.
- I dispositivi di sicurezza possono essere implementati:
 - A livello di applicazione (ad es. email-PGP)
 - A livello di trasporto (ad es. SSL, SET)
 - A livello di rete (IPsec)
 - A livello di linea (WLAN)


E-mail sicure - Segretezza dei dati

• Alice vuole inviare un messaggio m segreto a Bob

- Genera una chiave simmetrica casuale, K_s
- Cifra il messaggio con K_S , $K_S(m)$.
- Cifra anche K_S con la chiave pubblica di Bob, $e_B(K_S)$.
- Invia sia $K_s(m)$ che $e_B(K_s)$ a Bob

E-mail sicura - Segretezza, autenticazione ed integrità

- Il digest del messaggio viene cifrato con la chiave privata del mittente (firma e integrità)
- Il messaggio viene cifrato con una chiave simmetrica insieme alla firma; il tutto viene cifrato con la chiave pubblica del destinatario (segretezza)

E-mail sicura - PGP

Pretty Good Privacy (PGP)

- E' uno schema di di cifratura per e-mail, uno standard de facto.
- Usa la cifratura simmetrica (Triple-DES o IDEA) e a chiave pubblica (RSA), le funzioni di *Hash* (MD5 o SHA) e la firma digitale come descritto prima
- Quindi fornisce riservatezza, autenticazione del mittente e verifica dell'integrità del messaggio
- Inventato da Phil Zimmerman, oggetto per tre anni di indagini da parte federale (USA).

```
---BEGIN PGP SIGNED MESSAGE---
Hash: SHA1

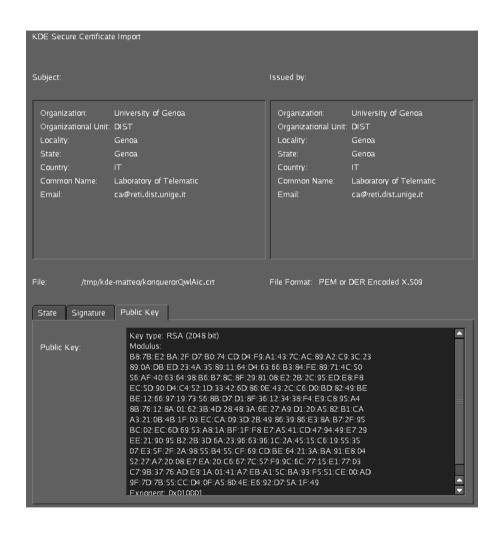
Bob:My husband is out of town
tonight.Passionately yours,
Alice

---BEGIN PGP SIGNATURE---
Version: PGP 5.0
Charset: noconv
yhHJRHhGJGhgg/12EpJ+lo8gE4vB3mqJh
FEvZP9t6n7G6m5Gw2
---END PGP SIGNATURE---
```

Secure Socket Layer (SSL)

- SSL opera a livello di trasporto e fornisce funzioni per la sicurezza ad ogni applicazione basata su TCP
- E' utilizzato da varie applicazioni fra cui www *server* e *browser* per servizi di *e-commerce* (shttp)
- I servizi per la sicurezza di SSL sono:
 - Autenticazione del server (tramite certificato firmato da CA fidate)
 - Cifratura dei dati
 - Autenticazione dei client (opzionale)
- E' la base della *Transport Layer Security (TSL)* dell'IETF

Secure Socket Layer (SSL)

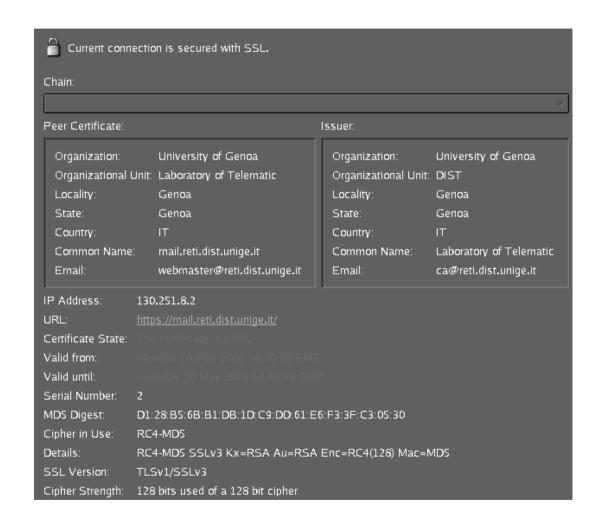

Autenticazione del server

- Un browser con SSL deve possedere la chiave pubblica di una o più CA.
- Il browser richiede il certificato del Server secondo uno dei CA che conosce.
- Il browser usa la chiave pubblica del CA per estrarre la chiave pubblica del Server.

Sessioni SSL


- Per effettuare lo scambio sicuro, SSL crea delle sessioni che possono essere usate anche da più connessioni TCP contemporaneamente
- La sessione prevede:
 - la generazione di una chiave simmetrica da parte del *browser*, cifrata con la chiave pubblica del server e ad esso inviata;
 - La decifratura della chiave simmetrica da parte del server
 - Uno scambio per definire se e come i messaggi verranno cifrati

Distribuzione delle chiavi e certificazione: Certificati


Certificato di una CA autofirmato

Distribuzione delle chiavi e certificazione: Certificati

Certificato di un server web firmato da una CA non riconosciuta dal browser

Distribuzione delle chiavi e certificazione: Certificati

Certificato di un server web firmato da una CA riconosciuta dal browser

Sicurezza a livello di rete: IPsec (IP security)

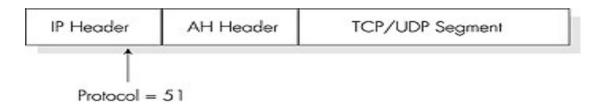
- La cifratura continua ad essere *end-to-end* ma viene effettuata nel livello di rete sui pacchetti IP e quindi diventa disponibile a tutti i protocolli che usano IP (oltre TCP, UDP, ICMP, SNMP, ...).
- Per quanto concerne l'autenticazione, in questo caso questa può avvenire anche nei confronti di indirizzi IP.
- IPsec si compone di due protocolli:
 - Authentication Header (AH) protocol
 - Encapsulation Security Payload (ESP) protocol

Sicurezza a livello di rete: IPsec (IP security)

- Alcuni esempi di utilizzo di IPsec sono:
 - Interconnessione sicura di reti aziendali tramite
 Internet (in sostanza permette la realizzazione di Virtual Private Network (VPN)).
 - Accesso remoto sicuro in Internet.
 - Interconnessione sicura fra organizzazioni diverse via Internet.
 - Migliore sicurezza nel commercio elettronico.

Sicurezza a livello di rete: IPsec (IP security)

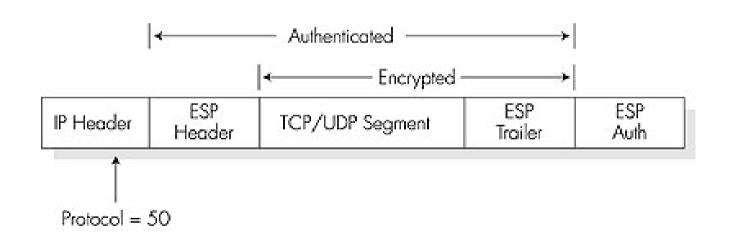
• Ambedue i protocolli di IPsec (ESP e AH) operano tramite una canale logico a livello di rete chiamato *Security Association* (SA), creato tra sorgente e destinazione con un *handshake*.


• L'SA è

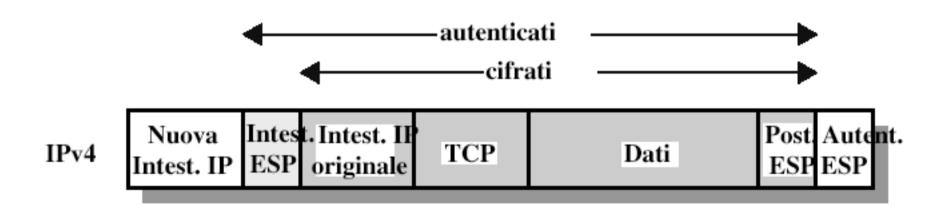
- Unidirezionale
- Univocamente determinato da:
 - » Protocollo di sicurezza usato (ESP o AH).
 - » Indirizzo IP della sorgente.
 - » ID a 32 bit della connessione (SPI, Security Parameter Index).

Sicurezza a livello di rete: IPsec - AH

- Fornisce l'autenticazione dell'*host* e l'integrità dei dati ma non la riservatezza.
- L'intestazione AH viene inserita fra quella IP ed i dati
- Il numero di protocollo è il 51
- I *router* intermedi elaborano il *datagram* in modo usuale.


- L'intestazione dell'AH comprende:
 - Un identificatore di connessione
 - Un digest "firmato" e calcolato sul datagram originale
 - Un campo che specifica il tipo di dati trasportati (UDP, TCP, ICMP...)
 - Un numero di sequenza

Sicurezza a livello di rete: IPsec - ESP


- Fornisce la riservatezza,
 l'autenticazione dell'host e
 l'integrità dei dati
- I dati e il postambolo dell'ESP sono cifrati
- L'indicazione della successiva intestazione è nel postambolo ESP.

- Il campo di autenticazione del ESP è simile ha quello dell'AH
- Il numero di protocollo contenuto nell'intestazione IP quando si usa ESP è 50

Sicurezza a livello di rete: IPsec - Modalità di trasporto

- Due sono le modalità di funzionamento:
 - Modalità di trasporto
 - Modalità Tunnel
 - » applicabile se le due entità sono apparati intermedi come router.
 - » permette comunicazioni sicure a terminali che non usano IPsec.
 - » Permette la cifratura dell'intero pacchetto IP.

Sicurezza a livello di rete: IPsec - SA

- Per il funzionamento di IPSec é necessario un meccanismo automatico per lo scambio e la gestione delle chiavi
 - Internet Key Exchange (IKE, RFC 2409) é il protocollo di default per lo scambio delle chiavi dell'IPSec
 - Internet Security Association and Key Management Protocol (ISKMP, RFC 2047 e 2048) definisce le procedure per stabilire ed interrompere gli SA. L'associazione per la sicurezza ISKMP é completamente separata dallo scambio di chiavi IKE.